
Let \[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\]. If \[100{S_n} = n\], then find the value of \[n\].
A). 199
B). 99
C). 200
D). 19
Answer
494.7k+ views
Hint: Here, in the question, we are given \[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\] which is the sum to \[n\] terms of a kind of special series. In order to find \[n\] such that \[100{S_n} = n\], we have to simplify \[{S_n}\] in terms of \[n\]. Then using the given equation \[100{S_n} = n\], we can find the value of \[n\].
Formulae used:
\[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], where \[{S_n}\] is the sum of \[n\] terms of the series and \[{a_k}\] is the \[{k^{th}}\] term of the series.
Sum of first \[n\] natural numbers=\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers=\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Let us collect the given information,
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\], and,
\[100{S_n} = n\]
Now, we have, \[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\]
Observing carefully the series, we get the \[{k^{th}}\] term of the series as:
\[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
Using identities,
Sum of first \[n\] natural numbers =\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers =\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\], we get,
\[{a_k} = \dfrac{{\dfrac{{k\left( {k + 1} \right)}}{2}}}{{{{\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)}^2}}}\]
Simplifying it, we get,
\[ \Rightarrow {a_k} = \dfrac{2}{{k\left( {k + 1} \right)}}\]
\[ \Rightarrow {a_k} = \dfrac{2}{k} - \dfrac{2}{{k + 1}}\]
Now, we have to find the Sum of \[n\] terms, which is \[{S_n}\] from the \[{k^{th}}\] term,
Using the formula \[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], we get
\[{S_n} = \sum\limits_{k = 1}^n {\left( {\dfrac{2}{k} - \dfrac{2}{{k + 1}}} \right)} \]
Expanding this, we get
\[{S_n} = 2-\dfrac{2}{2}+1- \dfrac{2}{3} + \dfrac{2}{3} - \dfrac{2}{4} + \cdots + \dfrac{2}{{n - 1}} - \dfrac{2}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}}\]
In the above expression we have an additive inverse of each term present except for the first and the last term. Therefore,
\[{S_n} = 2 - \dfrac{2}{{n + 1}} \\
\Rightarrow {S_n} = \dfrac{{2n}}{{n + 1}} \]
Given that \[100{S_n} = n\]
Putting the value of \[{S_n}\], we get
\[ 100 \times \dfrac{{2n}}{{n + 1}} = n \\
\Rightarrow 200n = n\left( {n + 1} \right) \\
\Rightarrow n + 1 = 200 \\
\Rightarrow n = 199 \]
Hence, the value of \[n\] is \[199\].
Hence option A. \[199\] is the correct answer.
Note: The series given in the question is a special kind of series. Special series are the series which are special in some or other way. It might be arithmetic or geometric or any other type of progressive series. While solving such types of questions, we must find \[{k^{th}}\] otherwise it would be very hectic to solve. With the help of \[{k^{th}}\] term, we can find \[{S_n}\] easily.
Formulae used:
\[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], where \[{S_n}\] is the sum of \[n\] terms of the series and \[{a_k}\] is the \[{k^{th}}\] term of the series.
Sum of first \[n\] natural numbers=\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers=\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Let us collect the given information,
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\], and,
\[100{S_n} = n\]
Now, we have, \[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\]
Observing carefully the series, we get the \[{k^{th}}\] term of the series as:
\[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
Using identities,
Sum of first \[n\] natural numbers =\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers =\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\], we get,
\[{a_k} = \dfrac{{\dfrac{{k\left( {k + 1} \right)}}{2}}}{{{{\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)}^2}}}\]
Simplifying it, we get,
\[ \Rightarrow {a_k} = \dfrac{2}{{k\left( {k + 1} \right)}}\]
\[ \Rightarrow {a_k} = \dfrac{2}{k} - \dfrac{2}{{k + 1}}\]
Now, we have to find the Sum of \[n\] terms, which is \[{S_n}\] from the \[{k^{th}}\] term,
Using the formula \[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], we get
\[{S_n} = \sum\limits_{k = 1}^n {\left( {\dfrac{2}{k} - \dfrac{2}{{k + 1}}} \right)} \]
Expanding this, we get
\[{S_n} = 2-\dfrac{2}{2}+1- \dfrac{2}{3} + \dfrac{2}{3} - \dfrac{2}{4} + \cdots + \dfrac{2}{{n - 1}} - \dfrac{2}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}}\]
In the above expression we have an additive inverse of each term present except for the first and the last term. Therefore,
\[{S_n} = 2 - \dfrac{2}{{n + 1}} \\
\Rightarrow {S_n} = \dfrac{{2n}}{{n + 1}} \]
Given that \[100{S_n} = n\]
Putting the value of \[{S_n}\], we get
\[ 100 \times \dfrac{{2n}}{{n + 1}} = n \\
\Rightarrow 200n = n\left( {n + 1} \right) \\
\Rightarrow n + 1 = 200 \\
\Rightarrow n = 199 \]
Hence, the value of \[n\] is \[199\].
Hence option A. \[199\] is the correct answer.
Note: The series given in the question is a special kind of series. Special series are the series which are special in some or other way. It might be arithmetic or geometric or any other type of progressive series. While solving such types of questions, we must find \[{k^{th}}\] otherwise it would be very hectic to solve. With the help of \[{k^{th}}\] term, we can find \[{S_n}\] easily.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

