
Let \[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\]. If \[100{S_n} = n\], then find the value of \[n\].
A). 199
B). 99
C). 200
D). 19
Answer
501.6k+ views
Hint: Here, in the question, we are given \[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\] which is the sum to \[n\] terms of a kind of special series. In order to find \[n\] such that \[100{S_n} = n\], we have to simplify \[{S_n}\] in terms of \[n\]. Then using the given equation \[100{S_n} = n\], we can find the value of \[n\].
Formulae used:
\[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], where \[{S_n}\] is the sum of \[n\] terms of the series and \[{a_k}\] is the \[{k^{th}}\] term of the series.
Sum of first \[n\] natural numbers=\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers=\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Let us collect the given information,
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\], and,
\[100{S_n} = n\]
Now, we have, \[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\]
Observing carefully the series, we get the \[{k^{th}}\] term of the series as:
\[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
Using identities,
Sum of first \[n\] natural numbers =\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers =\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\], we get,
\[{a_k} = \dfrac{{\dfrac{{k\left( {k + 1} \right)}}{2}}}{{{{\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)}^2}}}\]
Simplifying it, we get,
\[ \Rightarrow {a_k} = \dfrac{2}{{k\left( {k + 1} \right)}}\]
\[ \Rightarrow {a_k} = \dfrac{2}{k} - \dfrac{2}{{k + 1}}\]
Now, we have to find the Sum of \[n\] terms, which is \[{S_n}\] from the \[{k^{th}}\] term,
Using the formula \[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], we get
\[{S_n} = \sum\limits_{k = 1}^n {\left( {\dfrac{2}{k} - \dfrac{2}{{k + 1}}} \right)} \]
Expanding this, we get
\[{S_n} = 2-\dfrac{2}{2}+1- \dfrac{2}{3} + \dfrac{2}{3} - \dfrac{2}{4} + \cdots + \dfrac{2}{{n - 1}} - \dfrac{2}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}}\]
In the above expression we have an additive inverse of each term present except for the first and the last term. Therefore,
\[{S_n} = 2 - \dfrac{2}{{n + 1}} \\
\Rightarrow {S_n} = \dfrac{{2n}}{{n + 1}} \]
Given that \[100{S_n} = n\]
Putting the value of \[{S_n}\], we get
\[ 100 \times \dfrac{{2n}}{{n + 1}} = n \\
\Rightarrow 200n = n\left( {n + 1} \right) \\
\Rightarrow n + 1 = 200 \\
\Rightarrow n = 199 \]
Hence, the value of \[n\] is \[199\].
Hence option A. \[199\] is the correct answer.
Note: The series given in the question is a special kind of series. Special series are the series which are special in some or other way. It might be arithmetic or geometric or any other type of progressive series. While solving such types of questions, we must find \[{k^{th}}\] otherwise it would be very hectic to solve. With the help of \[{k^{th}}\] term, we can find \[{S_n}\] easily.
Formulae used:
\[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], where \[{S_n}\] is the sum of \[n\] terms of the series and \[{a_k}\] is the \[{k^{th}}\] term of the series.
Sum of first \[n\] natural numbers=\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers=\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Let us collect the given information,
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\], and,
\[100{S_n} = n\]
Now, we have, \[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\]
Observing carefully the series, we get the \[{k^{th}}\] term of the series as:
\[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
Using identities,
Sum of first \[n\] natural numbers =\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers =\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\], we get,
\[{a_k} = \dfrac{{\dfrac{{k\left( {k + 1} \right)}}{2}}}{{{{\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)}^2}}}\]
Simplifying it, we get,
\[ \Rightarrow {a_k} = \dfrac{2}{{k\left( {k + 1} \right)}}\]
\[ \Rightarrow {a_k} = \dfrac{2}{k} - \dfrac{2}{{k + 1}}\]
Now, we have to find the Sum of \[n\] terms, which is \[{S_n}\] from the \[{k^{th}}\] term,
Using the formula \[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], we get
\[{S_n} = \sum\limits_{k = 1}^n {\left( {\dfrac{2}{k} - \dfrac{2}{{k + 1}}} \right)} \]
Expanding this, we get
\[{S_n} = 2-\dfrac{2}{2}+1- \dfrac{2}{3} + \dfrac{2}{3} - \dfrac{2}{4} + \cdots + \dfrac{2}{{n - 1}} - \dfrac{2}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}}\]
In the above expression we have an additive inverse of each term present except for the first and the last term. Therefore,
\[{S_n} = 2 - \dfrac{2}{{n + 1}} \\
\Rightarrow {S_n} = \dfrac{{2n}}{{n + 1}} \]
Given that \[100{S_n} = n\]
Putting the value of \[{S_n}\], we get
\[ 100 \times \dfrac{{2n}}{{n + 1}} = n \\
\Rightarrow 200n = n\left( {n + 1} \right) \\
\Rightarrow n + 1 = 200 \\
\Rightarrow n = 199 \]
Hence, the value of \[n\] is \[199\].
Hence option A. \[199\] is the correct answer.
Note: The series given in the question is a special kind of series. Special series are the series which are special in some or other way. It might be arithmetic or geometric or any other type of progressive series. While solving such types of questions, we must find \[{k^{th}}\] otherwise it would be very hectic to solve. With the help of \[{k^{th}}\] term, we can find \[{S_n}\] easily.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

