
Let $S\left( \alpha \right)=\left\{ \left( x,y \right):{{y}^{2}}\le x,0\le x\le \alpha \right\}$ and $A\left( \alpha \right)$is area of the region $S\left( \alpha \right)$. If for a $\lambda ,0<\lambda <4,A\left( \lambda \right):A\left( 4 \right)=2:5,$ then $\lambda $ equals
A. \[2{{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}\]
B. \[4{{\left( \dfrac{2}{5} \right)}^{\dfrac{1}{3}}}\]
C. \[4{{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}\]
D. \[2{{\left( \dfrac{2}{5} \right)}^{\dfrac{1}{3}}}\]
Answer
522.6k+ views
Hint: First we will plot the graph and identify the region for $A\left( \lambda \right)$ then we will write the given parabolic equation in form of x and integrate it from $x=0\text{ to }x=\lambda $, after integrating we will simply apply the final condition given in the question and then obtain the value of $\lambda $.
Complete step by step answer:
Given that, $S\left( \alpha \right)=\left\{ \left( x,y \right):{{y}^{2}}\le x,0\le x\le \alpha \right\}$ and $A\left( \alpha \right)$is area of the region $S\left( \alpha \right)$:
Now, We see that $A\left( \lambda \right)$ is the region bounded by $x={{y}^{2}}$ from $x=0\text{ to }x=\lambda $, so to find $A\left( \lambda \right)$ we will integrate the parabolic equation from $0$ to $\lambda $ :
To start the integration first write the equation in form of x such that: $x={{y}^{2}}\Rightarrow y=\sqrt{x}$
Now we will integrate the following, to integrate it we will use the power rule that is : \[\int{f{{(x)}^{n}}dx=\dfrac{f{{(x)}^{n+1}}}{n+1}}\]
So:
$\begin{align}
& A\left( \lambda \right)=2\int\limits_{0}^{\lambda }{\sqrt{x}}dx\Rightarrow 2{{\left[ \dfrac{\left( {{x}^{\dfrac{1}{2}+1}} \right)}{\left( \dfrac{1}{2}+1 \right)} \right]}^{\lambda }}_{0} \\
& \Rightarrow 2{{\left[ \dfrac{\left( {{x}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]}^{\lambda }}_{0} \\
\end{align}$
Now we will apply the upper limit and the lower limit into the obtained integral we get:
$2{{\left[ \dfrac{\left( {{x}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]}^{\lambda }}_{0}\Rightarrow 2\left[ \dfrac{\left( {{\lambda }^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]-2\left[ \dfrac{\left( {{0}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]\Rightarrow \dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}}$
Therefore , $A\left( \lambda \right)=\dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}}\text{ }.......\text{Equation 1}\text{.}$
Now it is given in the question that: \[\dfrac{A(\lambda )}{A(4)}=\dfrac{2}{5},(0<\lambda <4)\]
We will put the value of $A\left( \lambda \right)$ from equation 1 into the above mentioned equation:
\[\begin{align}
& \dfrac{A(\lambda )}{A(4)}=\dfrac{2}{5} \\
& \Rightarrow \dfrac{\left( \dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}} \right)}{\left( \dfrac{4}{3}{{4}^{\dfrac{3}{2}}} \right)}=\dfrac{2}{5}\Rightarrow \dfrac{{{\lambda }^{\dfrac{3}{2}}}}{{{4}^{\dfrac{3}{2}}}}=\dfrac{2}{5} \\
\end{align}\]
Now we will square both the sides:
\[\begin{align}
& \Rightarrow {{\left( \dfrac{{{\lambda }^{\dfrac{3}{2}}}}{{{4}^{\dfrac{3}{2}}}} \right)}^{2}}={{\left( \dfrac{2}{5} \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{\lambda }{4} \right)}^{3}}={{\left( \dfrac{2}{5} \right)}^{2}}\Rightarrow {{\left( \dfrac{\lambda }{4} \right)}^{3}}=\left( \dfrac{4}{25} \right) \\
\end{align}\]
Again we will be taking cube roots on both sides:
\[\Rightarrow \left( \dfrac{\lambda }{4} \right)={{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}\Rightarrow \lambda =4{{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}\]
Therefore the correct answer is option C.
Note:
Remember that a region bounded from point $a$ to $b$ means that integration will be done from the lower limit $a$ and the upper limit $b$ . Also take care when you take the cube roots while finding the final value of $\lambda $, we have written the cube roots as raising the fraction or number to the power of $\dfrac{1}{3}$ . Students can make the mistake while solving the terms raised with power so one must learn the properties of powers.
Complete step by step answer:
Given that, $S\left( \alpha \right)=\left\{ \left( x,y \right):{{y}^{2}}\le x,0\le x\le \alpha \right\}$ and $A\left( \alpha \right)$is area of the region $S\left( \alpha \right)$:

Now, We see that $A\left( \lambda \right)$ is the region bounded by $x={{y}^{2}}$ from $x=0\text{ to }x=\lambda $, so to find $A\left( \lambda \right)$ we will integrate the parabolic equation from $0$ to $\lambda $ :
To start the integration first write the equation in form of x such that: $x={{y}^{2}}\Rightarrow y=\sqrt{x}$
Now we will integrate the following, to integrate it we will use the power rule that is : \[\int{f{{(x)}^{n}}dx=\dfrac{f{{(x)}^{n+1}}}{n+1}}\]
So:
$\begin{align}
& A\left( \lambda \right)=2\int\limits_{0}^{\lambda }{\sqrt{x}}dx\Rightarrow 2{{\left[ \dfrac{\left( {{x}^{\dfrac{1}{2}+1}} \right)}{\left( \dfrac{1}{2}+1 \right)} \right]}^{\lambda }}_{0} \\
& \Rightarrow 2{{\left[ \dfrac{\left( {{x}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]}^{\lambda }}_{0} \\
\end{align}$
Now we will apply the upper limit and the lower limit into the obtained integral we get:
$2{{\left[ \dfrac{\left( {{x}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]}^{\lambda }}_{0}\Rightarrow 2\left[ \dfrac{\left( {{\lambda }^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]-2\left[ \dfrac{\left( {{0}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]\Rightarrow \dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}}$
Therefore , $A\left( \lambda \right)=\dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}}\text{ }.......\text{Equation 1}\text{.}$
Now it is given in the question that: \[\dfrac{A(\lambda )}{A(4)}=\dfrac{2}{5},(0<\lambda <4)\]
We will put the value of $A\left( \lambda \right)$ from equation 1 into the above mentioned equation:
\[\begin{align}
& \dfrac{A(\lambda )}{A(4)}=\dfrac{2}{5} \\
& \Rightarrow \dfrac{\left( \dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}} \right)}{\left( \dfrac{4}{3}{{4}^{\dfrac{3}{2}}} \right)}=\dfrac{2}{5}\Rightarrow \dfrac{{{\lambda }^{\dfrac{3}{2}}}}{{{4}^{\dfrac{3}{2}}}}=\dfrac{2}{5} \\
\end{align}\]
Now we will square both the sides:
\[\begin{align}
& \Rightarrow {{\left( \dfrac{{{\lambda }^{\dfrac{3}{2}}}}{{{4}^{\dfrac{3}{2}}}} \right)}^{2}}={{\left( \dfrac{2}{5} \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{\lambda }{4} \right)}^{3}}={{\left( \dfrac{2}{5} \right)}^{2}}\Rightarrow {{\left( \dfrac{\lambda }{4} \right)}^{3}}=\left( \dfrac{4}{25} \right) \\
\end{align}\]
Again we will be taking cube roots on both sides:
\[\Rightarrow \left( \dfrac{\lambda }{4} \right)={{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}\Rightarrow \lambda =4{{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}\]
Therefore the correct answer is option C.
Note:
Remember that a region bounded from point $a$ to $b$ means that integration will be done from the lower limit $a$ and the upper limit $b$ . Also take care when you take the cube roots while finding the final value of $\lambda $, we have written the cube roots as raising the fraction or number to the power of $\dfrac{1}{3}$ . Students can make the mistake while solving the terms raised with power so one must learn the properties of powers.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
