
Let ${s_1},{s_2},{s_3} \cdot \cdot \cdot \cdot $ and ${t_1},{t_2},{t_3} \cdot \cdot \cdot \cdot $ are two arithmetic sequence such that ${s_1} = {t_1} \ne 0$;${s_2} = 2{t_2}$ and $\sum\limits_{i = 1}^{10} {{s_i} = \sum\limits_{i = 1}^{15} {{t_i}} } $. Then the value of $\dfrac{{{s_2} - {s_1}}}{{{t_2} - {t_1}}}$ is
A) $\dfrac{8}{3}$
B) $\dfrac{3}{2}$
C) $\dfrac{{19}}{8}$
D) $2$
Answer
566.7k+ views
Hint:
First assume the common difference and the first term of both the given series and then use the given data in the problem and the formulas given below to find out the relation between both the series, it gives the values of the common difference of both the series, which gives the desired result.
The ${n^{th}}$ term of the Arithmetic series is given as:
${a_n} = a + \left( {n - 1} \right)d$
The sum of the ${n^{th}}$ term is given as:
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Complete step by step solution:
It is given in the problem that ${s_1},{s_2},{s_3} \cdot \cdot \cdot \cdot $ and ${t_1},{t_2},{t_3} \cdot \cdot \cdot \cdot $are two arithmetic sequences such that${s_1} = {t_1} \ne 0;{s_2} = 2{t_2}$and$\sum\limits_{i = 1}^{10} {{s_i} = \sum\limits_{i = 1}^{15} {{t_i}} } $.
We have to find the value of $\dfrac{{{s_2} - {s_1}}}{{{t_2} - {t_1}}}$, but we know that in the arithmetic sequence, the difference of two consecutive terms is constant and called as common difference, so we have to find the value ratio of the common difference of the series.
Assume that ${d_1}$ is a common difference and ${a_1}$ is the first term of the series ${s_1}, {s_2}, {s_3} \cdot \cdot \cdot \cdot $ and ${d_2}$ is a common difference and ${a_2}$ is the first term of the series ${t_1}, {t_2}, {t_3} \cdot \cdot \cdot \cdot $.
It is given to us that ${s_1} = {t_1} \ne 0$, it means that:
${a_1} = {a_2} \ne 0$ … (1)
It is also given that:
${s_2} = 2{t_2}$
Using the ${n^{th}}$ term formula of the arithmetic sequence, we have
${a_1} + {d_1} = 2\left( {{a_2} + {d_2}} \right)$
From equation (1):
$\Rightarrow {a_1} + {d_1} = 2\left( {{a_1} + {d_2}} \right)$
$\Rightarrow {a_1} + {d_1} = 2{a_1} + 2{d_2}$
$\Rightarrow {d_1} - {a_1} = 2{d_2}$
$\Rightarrow {d_2} = \dfrac{{{d_1} - {a_1}}}{2}$ … (2)
We have also given that:
$\sum\limits_{i = 1}^{10} {{s_i} = \sum\limits_{i = 1}^{15} {{t_i}} } $
Then using the formula of the sum of Arithmetic series, we have
$\Rightarrow \dfrac{{10}}{2}\left[ {2{a_1} + \left( {10 - 1} \right){d_1}} \right] = \dfrac{{15}}{2}\left[ {2{a_2} + \left( {15 - 1} \right){d_2}} \right]$
$\Rightarrow 2\left[ {2{a_1} + 9{d_1}} \right] = 3\left[ {2{a_2} + 14{d_2}} \right]$
Substitute the values of equation (1) and equation (2):
$\Rightarrow 2\left[ {2{a_1} + 9{d_1}} \right] = 3\left[ {2{a_1} + 14\left( {\dfrac{{{d_1} - {a_1}}}{2}} \right)} \right]$
$\Rightarrow 4{a_1} + 18{d_1} = 3\left[ {7{d_1} - 5{a_1}} \right]$
$\Rightarrow 4{a_1} + 18{d_1} = 21{d_1} - 15{a_1}$
$\Rightarrow 19{a_1} = 3{d_1}$
$\Rightarrow {d_1} = \dfrac{{19}}{3}{a_1}$ … (2)
Now, we put the value of ${d_1}$ in the equation (1):
$\Rightarrow {d_2} = \dfrac{{\dfrac{{19}}{3}{a_1} - {a_1}}}{2}$
$\Rightarrow {d_2} = \dfrac{{8{a_1}}}{3}$
Now, we divide ${d_1}$ by ${d_2}$:
\[\Rightarrow \dfrac{{{d_1}}}{{{d_2}}} = \dfrac{{\dfrac{{19}}{3}{a_1}}}{{\dfrac{{8{a_1}}}{3}}}\]
\[\Rightarrow \dfrac{{{d_1}}}{{{d_2}}} = \dfrac{{19}}{8}\]
As ${d_1}$ is the common difference of the series ${s_1}, {s_2}, {s_3} \cdot \cdot \cdot \cdot $ and ${d_2}$ is the common difference of the series ${t_1}, {t_2}, {t_3} \cdot \cdot \cdot \cdot $, so we have:
$\Rightarrow \dfrac{{{s_2} - {s_1}}}{{{t_2} - {t_1}}} = \dfrac{{19}}{8}$
This is the required result.
Hence, the option (C) is correct.
Note:
As given in the problem that given series are Arithmetic series it means that the common difference of the given series is constant, and the common difference is the difference of the two consecutive terms of the series.
First assume the common difference and the first term of both the given series and then use the given data in the problem and the formulas given below to find out the relation between both the series, it gives the values of the common difference of both the series, which gives the desired result.
The ${n^{th}}$ term of the Arithmetic series is given as:
${a_n} = a + \left( {n - 1} \right)d$
The sum of the ${n^{th}}$ term is given as:
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Complete step by step solution:
It is given in the problem that ${s_1},{s_2},{s_3} \cdot \cdot \cdot \cdot $ and ${t_1},{t_2},{t_3} \cdot \cdot \cdot \cdot $are two arithmetic sequences such that${s_1} = {t_1} \ne 0;{s_2} = 2{t_2}$and$\sum\limits_{i = 1}^{10} {{s_i} = \sum\limits_{i = 1}^{15} {{t_i}} } $.
We have to find the value of $\dfrac{{{s_2} - {s_1}}}{{{t_2} - {t_1}}}$, but we know that in the arithmetic sequence, the difference of two consecutive terms is constant and called as common difference, so we have to find the value ratio of the common difference of the series.
Assume that ${d_1}$ is a common difference and ${a_1}$ is the first term of the series ${s_1}, {s_2}, {s_3} \cdot \cdot \cdot \cdot $ and ${d_2}$ is a common difference and ${a_2}$ is the first term of the series ${t_1}, {t_2}, {t_3} \cdot \cdot \cdot \cdot $.
It is given to us that ${s_1} = {t_1} \ne 0$, it means that:
${a_1} = {a_2} \ne 0$ … (1)
It is also given that:
${s_2} = 2{t_2}$
Using the ${n^{th}}$ term formula of the arithmetic sequence, we have
${a_1} + {d_1} = 2\left( {{a_2} + {d_2}} \right)$
From equation (1):
$\Rightarrow {a_1} + {d_1} = 2\left( {{a_1} + {d_2}} \right)$
$\Rightarrow {a_1} + {d_1} = 2{a_1} + 2{d_2}$
$\Rightarrow {d_1} - {a_1} = 2{d_2}$
$\Rightarrow {d_2} = \dfrac{{{d_1} - {a_1}}}{2}$ … (2)
We have also given that:
$\sum\limits_{i = 1}^{10} {{s_i} = \sum\limits_{i = 1}^{15} {{t_i}} } $
Then using the formula of the sum of Arithmetic series, we have
$\Rightarrow \dfrac{{10}}{2}\left[ {2{a_1} + \left( {10 - 1} \right){d_1}} \right] = \dfrac{{15}}{2}\left[ {2{a_2} + \left( {15 - 1} \right){d_2}} \right]$
$\Rightarrow 2\left[ {2{a_1} + 9{d_1}} \right] = 3\left[ {2{a_2} + 14{d_2}} \right]$
Substitute the values of equation (1) and equation (2):
$\Rightarrow 2\left[ {2{a_1} + 9{d_1}} \right] = 3\left[ {2{a_1} + 14\left( {\dfrac{{{d_1} - {a_1}}}{2}} \right)} \right]$
$\Rightarrow 4{a_1} + 18{d_1} = 3\left[ {7{d_1} - 5{a_1}} \right]$
$\Rightarrow 4{a_1} + 18{d_1} = 21{d_1} - 15{a_1}$
$\Rightarrow 19{a_1} = 3{d_1}$
$\Rightarrow {d_1} = \dfrac{{19}}{3}{a_1}$ … (2)
Now, we put the value of ${d_1}$ in the equation (1):
$\Rightarrow {d_2} = \dfrac{{\dfrac{{19}}{3}{a_1} - {a_1}}}{2}$
$\Rightarrow {d_2} = \dfrac{{8{a_1}}}{3}$
Now, we divide ${d_1}$ by ${d_2}$:
\[\Rightarrow \dfrac{{{d_1}}}{{{d_2}}} = \dfrac{{\dfrac{{19}}{3}{a_1}}}{{\dfrac{{8{a_1}}}{3}}}\]
\[\Rightarrow \dfrac{{{d_1}}}{{{d_2}}} = \dfrac{{19}}{8}\]
As ${d_1}$ is the common difference of the series ${s_1}, {s_2}, {s_3} \cdot \cdot \cdot \cdot $ and ${d_2}$ is the common difference of the series ${t_1}, {t_2}, {t_3} \cdot \cdot \cdot \cdot $, so we have:
$\Rightarrow \dfrac{{{s_2} - {s_1}}}{{{t_2} - {t_1}}} = \dfrac{{19}}{8}$
This is the required result.
Hence, the option (C) is correct.
Note:
As given in the problem that given series are Arithmetic series it means that the common difference of the given series is constant, and the common difference is the difference of the two consecutive terms of the series.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

