
Let R be any relation in the set A of human beings in a town at a particular time. If $R=\left\{ \left( x,y \right):x\,is\,exactly\,7\,cm\,taller\,than\,y \right\}$, Then R is
(a) Not symmetric
(b) Reflexive
(c) Symmetric but not transitive
(d) An equivalent relation
Answer
596.7k+ views
Hint: In this question, we will check conditions of reflexive, symmetric and transitive relation separately and use it to find the conclusion.
Complete step-by-step solution -
In given question, A is set of, all human beings in a town and relation R is given as:
$R=\left\{ \left( x,y \right):x\,is\,exactly\,7\,cm\,tall\,then\,y \right\}$.
Now, any relation is reflexive, if for all elements in a set, an element is related to itself, that is, for all x belongs to A, $\left( x,x \right)$ belongs to R.
Now, in a given relation, $\left( x,x \right)$ belongs to R means that x is 7 cm taller than y. But this cannot be true, as no person can be taller than himself. Therefore, R is not reflexive.
Also, in any relation, if x is related to y such that then y is also related to x, then R is symmetric. That is, if $\left( x,y \right)$ belongs to R such that $\left( y,x \right)$ also belongs to R, then R is symmetric.
Now, in a given relation, $\left( x,y \right)$ belongs to R means that x is exactly 7 cm taller than y. Now, if x is taller than y, then y is 7 cm shorter than x. But $\left( y,x \right)$ belongs to R which means y is 7 cm taller than x, which is not true. So, $\left( y,x \right)$ does not belong to R.
Therefore, R is not symmetric.
Also, in any relation, if x is related to y and y is related to z, such that, then x is related to y, then relation is transitive. That is, if $\left( x,y \right)$ and $\left( y,z \right)$ belong to R, then R is transitive.
Now, in given relation,
$\left( x,y \right)$ and $\left( y,z \right)$ belongs to R means that x is 7 cm taller than y and y is 7 cm taller than z. the, x will be 7+7=14 cm taller than z. But $\left( x,z \right)$ belongs to R will mean x is exactly 7 cm taller than z, which is not true. So, $\left( x,z \right)$ does not belong to R.
Therefore, R is not transitive.
Hence the correct option answer is option (a).
Note: In this type of question, where writing tabular form of a set is not possible, we consider examples of the situation given to solve the question. We proceed to a solution with a definition of reflexive, symmetric and transitive and check whether the given relation follows the definition or not.
Complete step-by-step solution -
In given question, A is set of, all human beings in a town and relation R is given as:
$R=\left\{ \left( x,y \right):x\,is\,exactly\,7\,cm\,tall\,then\,y \right\}$.
Now, any relation is reflexive, if for all elements in a set, an element is related to itself, that is, for all x belongs to A, $\left( x,x \right)$ belongs to R.
Now, in a given relation, $\left( x,x \right)$ belongs to R means that x is 7 cm taller than y. But this cannot be true, as no person can be taller than himself. Therefore, R is not reflexive.
Also, in any relation, if x is related to y such that then y is also related to x, then R is symmetric. That is, if $\left( x,y \right)$ belongs to R such that $\left( y,x \right)$ also belongs to R, then R is symmetric.
Now, in a given relation, $\left( x,y \right)$ belongs to R means that x is exactly 7 cm taller than y. Now, if x is taller than y, then y is 7 cm shorter than x. But $\left( y,x \right)$ belongs to R which means y is 7 cm taller than x, which is not true. So, $\left( y,x \right)$ does not belong to R.
Therefore, R is not symmetric.
Also, in any relation, if x is related to y and y is related to z, such that, then x is related to y, then relation is transitive. That is, if $\left( x,y \right)$ and $\left( y,z \right)$ belong to R, then R is transitive.
Now, in given relation,
$\left( x,y \right)$ and $\left( y,z \right)$ belongs to R means that x is 7 cm taller than y and y is 7 cm taller than z. the, x will be 7+7=14 cm taller than z. But $\left( x,z \right)$ belongs to R will mean x is exactly 7 cm taller than z, which is not true. So, $\left( x,z \right)$ does not belong to R.
Therefore, R is not transitive.
Hence the correct option answer is option (a).
Note: In this type of question, where writing tabular form of a set is not possible, we consider examples of the situation given to solve the question. We proceed to a solution with a definition of reflexive, symmetric and transitive and check whether the given relation follows the definition or not.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

