Let ${{P}_{n}}=\sqrt[n]{\dfrac{\left( 3n \right)!}{\left( 2n \right)!}}\left( n=1,2,3...... \right)$ then find $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{P}_{n}}}{n}$
Last updated date: 24th Mar 2023
•
Total views: 307.8k
•
Views today: 5.90k
Answer
307.8k+ views
Hint: Simplify the given limit then apply limit as a sum concept of integral chapter.
Hence, we have equation;
${{P}_{n}}={{\left( \dfrac{3n!}{2n!} \right)}^{\dfrac{1}{n}}}\left( n=1,2,3...... \right)$
And we have to find $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{P}_{n}}}{n}$i.e.
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{\left( 3n \right)!}{\left( 2n \right)!} \right)}^{\dfrac{1}{n}}}\]
Let us suppose the above relation as
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{3n!}{2n!} \right)}^{\dfrac{1}{n}}}.........\left( 1 \right)$
We cannot directly put a limit to the given function as $n$ is not defined.
We need to first simplify the given relation.
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{\left( 3n \right)\left( 3n-1 \right)\left( 3n-2 \right)........1}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)........1} \right)}^{\dfrac{1}{n}}}$
Let us write $\left( 3n \right)!$ in reverse order
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{1.2.3................3n}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)..........2.1} \right)}^{\dfrac{1}{n}}}$
As we know that $\left( 2n<3n \right)$ ; hence $2n$ will come in between $1\And 3n$ . Hence, we can rewrite the above relation as;
\[y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{1.2.3.4......\left( 2n \right)\left( 2n+1 \right)\left( 2n+2 \right)......3n}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right).........2.1} \right)}^{\dfrac{1}{n}}}\]
Now, by simplifying the above equation, we can observe that $\left( 2n \right)!$ is common in numerator and denominator. Hence, we can cancel out them and we get the above equation as;
$y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( 2n+1 \right)\left( 2n+2 \right)\left( 2n+3 \right)........3n}{{n}^{n}} \right)}^{\dfrac{1}{n}}}$
Now, let us take the denominator $'n'$ to the bracket of numerators. $'n'$ will be converted to ${{n}^{n}}$ as power of numerator is $\dfrac{1}{n}$.
Therefore, $y$can be written as;
\[\begin{align}
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( 2n+1 \right)\left( 2n+2 \right).....3n}{{{n}^{n}}} \right)}^{\dfrac{1}{n}}} \\
& \because {{n}^{n}}=n.n.n.n....\left( n\text{ number of times} \right) \\
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \left( \dfrac{2n+1}{n} \right)\left( \dfrac{2n+2}{n} \right)......\left( \dfrac{3n}{n} \right) \right)}^{\dfrac{1}{n}}} \\
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right).........\left( 2+\dfrac{n}{n} \right) \right)}^{\dfrac{1}{n}}}........\left( 2 \right) \\
\end{align}\]
We cannot put a limit to the equation $\left( 2 \right)$ as well, because the limit is not defined till now.
So, taking log to both sides of equation $\left( 2 \right)$
$\log y=\underset{x\to \infty }{\mathop{\lim }}\,\log {{\left( \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right)......\left( 2+\dfrac{n}{n} \right) \right)}^{\dfrac{1}{n}}}$
As we know property of logarithm as
$\begin{align}
& \log {{a}^{m}}=m\log a \\
& \log ab=\log a+\log b \\
\end{align}$
From the above relation (later one), we can write this equation for $n$ values as;
$\log \left( {{x}_{1}}{{x}_{2}}......{{x}_{n}} \right)=\log {{x}_{1}}+\log {{x}_{2}}+\log {{x}_{3}}+.......\log {{x}_{n}}$
Hence, using the above properties of logarithm with the equation $'\log y'$ we get
$\begin{align}
& \log =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\log \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right).....\left( 2+\dfrac{n}{n} \right) \\
& \log =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \log \left( 2+\dfrac{1}{n} \right)+\log \left( 2+\dfrac{2}{n} \right)+\log \left( 2+\dfrac{3}{n} \right)+............\log \left( 2+\dfrac{n}{n} \right) \right)........\left( 3 \right) \\
\end{align}$
Now, as we have learnt in integration that we can convert any infinite series with summation to integral by using limit as a sum concept.
So, let us first write equation $\left( 3 \right)$ in form of limit as sum:
$\log y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 2+\dfrac{r}{n} \right)............\left( 4 \right)}$
We have learnt that if any summation given as;
$\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{f\left( a+\dfrac{r}{n} \right)}$
Then we can convert this series into integral by replacing
$\begin{align}
& \dfrac{1}{n}\text{ to }dx \\
& \dfrac{r}{n}\text{ to }x \\
\end{align}$
Lower limit = put $n\to \infty \text{ with }\left( \dfrac{r}{n} \right)$
Upper limit = put maximum value of$\text{ }r\text{ in }\left( \dfrac{r}{n} \right)$
Hence, we can convert equation $\left( 4 \right)$ as
\[\begin{align}
& \log y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 2+\dfrac{r}{n} \right)} \\
& \text{upper limit=}1\left( \dfrac{r}{n}=\dfrac{n}{n}=1 \right) \\
& \text{lower limit=0}\left( {}_{n\to \infty }\dfrac{r}{n}=0 \right) \\
\end{align}\]
$\log y=\int_{0}^{1}{\log \left( 2+x \right)dx.............\left( 5 \right)}$
Above integration can be solved by integration by parts which can be expressed as, if we have two functions in multiplication as $\int{f\left( x \right)g\left( x \right)dx}$may be different to each other (Example: one trigonometric and another algebraic) then we can calculate the integration by using relation$\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx-\int{f'\left( x \right)\int{g\left( x \right)dx.dx.........\left( 6 \right)}}}$
Applying integration by parts as expressed in equation $\left( 6 \right)$ with equation $\left( 5 \right)$, as
$f\left( x \right)=1\And g\left( x \right)=\log \left( 2+x \right)$.
$\begin{align}
& \log y=\int_{0}^{1}{1.\log \left( 2+x \right)dx} \\
& \log y=\log \left( 2+x \right)\int_{0}^{1}{1dx}-\int_{0}^{1}{\dfrac{d}{dx}\left( \log \left( 2+x \right)\int{1dx} \right)dx} \\
\end{align}$
We know
\[\begin{align}
& \int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}} \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
\end{align}\]
Therefore,
\[\begin{align}
& \log y=x\log \left( 2+x \right)\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.-\int_{0}^{1}{\dfrac{1}{2+x}\left( x \right)dx} \\
& \log y=\left( 1\log 3-0 \right)-\int_{0}^{1}{\dfrac{x}{2+x}dx} \\
& \log y=\log 3-\int_{0}^{1}{\left( \dfrac{\left( 2+x \right)-2}{2+x} \right)}dx \\
& \log y=\log 3-\int_{0}^{1}{\left( 1-\dfrac{2}{2+x} \right)}dx \\
& \log y=\log 3=\int_{0}^{1}{1dx+2}\int_{0}^{1}{\dfrac{1}{2+x}dx} \\
& \int{\dfrac{1}{x}dx}=\log x={{\log }_{e}}x \\
& \log y=\log 3-x\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+2\log \left( 2+x \right)\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right. \\
& \log y=\log 3-1+2\log 3-2\log 2 \\
& \log y=3\log 3-2\log 2-1..............\left( 7 \right) \\
\end{align}\]
We know that,
$\log {{a}^{m}}=m\log a$ or vice versa
$\begin{align}
& \log y=\log {{3}^{3}}-\log {{2}^{2}}-1 \\
& \log y=\log 27-\log 4-1.............\left( 8 \right) \\
\end{align}$
We also have property of logarithm as
$\begin{align}
& \log a-\log b=\log \left( \dfrac{a}{b} \right) \\
& \log {{a}^{a}}=1 \\
\end{align}$
As, equation $\left( 8 \right)$ have log with (default) base $e$ , so we can replace $1\text{ to }\log {{e}^{e}}$
$\begin{align}
& \log {{e}^{y}}=\log e\dfrac{27}{4}-\log {{e}^{e}} \\
& \log y=\log \dfrac{27}{4e} \\
\end{align}$
Therefore,
$y=\dfrac{27}{4e}$ by comparison.
Note: This question does not belong to limit and differentiability chapter but from limit as a sum concept of integrals. It is the key point of this question to get a solution.
One can go wrong while calculating lower limit and upper limit which is defined as
Lower limit$=$ put $n\to \infty \text{ with }\left( \dfrac{r}{n} \right)$
Upper limit$=$ put maximum value of$\text{ }r\text{ in }\left( \dfrac{r}{n} \right)$
Integration of $\log \left( 2+x \right)$ is also an important step. As we need to multiply by $1$ for applying integration by parts.
Hence, we have equation;
${{P}_{n}}={{\left( \dfrac{3n!}{2n!} \right)}^{\dfrac{1}{n}}}\left( n=1,2,3...... \right)$
And we have to find $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{P}_{n}}}{n}$i.e.
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{\left( 3n \right)!}{\left( 2n \right)!} \right)}^{\dfrac{1}{n}}}\]
Let us suppose the above relation as
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{3n!}{2n!} \right)}^{\dfrac{1}{n}}}.........\left( 1 \right)$
We cannot directly put a limit to the given function as $n$ is not defined.
We need to first simplify the given relation.
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{\left( 3n \right)\left( 3n-1 \right)\left( 3n-2 \right)........1}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)........1} \right)}^{\dfrac{1}{n}}}$
Let us write $\left( 3n \right)!$ in reverse order
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{1.2.3................3n}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)..........2.1} \right)}^{\dfrac{1}{n}}}$
As we know that $\left( 2n<3n \right)$ ; hence $2n$ will come in between $1\And 3n$ . Hence, we can rewrite the above relation as;
\[y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{1.2.3.4......\left( 2n \right)\left( 2n+1 \right)\left( 2n+2 \right)......3n}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right).........2.1} \right)}^{\dfrac{1}{n}}}\]
Now, by simplifying the above equation, we can observe that $\left( 2n \right)!$ is common in numerator and denominator. Hence, we can cancel out them and we get the above equation as;
$y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( 2n+1 \right)\left( 2n+2 \right)\left( 2n+3 \right)........3n}{{n}^{n}} \right)}^{\dfrac{1}{n}}}$
Now, let us take the denominator $'n'$ to the bracket of numerators. $'n'$ will be converted to ${{n}^{n}}$ as power of numerator is $\dfrac{1}{n}$.
Therefore, $y$can be written as;
\[\begin{align}
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( 2n+1 \right)\left( 2n+2 \right).....3n}{{{n}^{n}}} \right)}^{\dfrac{1}{n}}} \\
& \because {{n}^{n}}=n.n.n.n....\left( n\text{ number of times} \right) \\
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \left( \dfrac{2n+1}{n} \right)\left( \dfrac{2n+2}{n} \right)......\left( \dfrac{3n}{n} \right) \right)}^{\dfrac{1}{n}}} \\
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right).........\left( 2+\dfrac{n}{n} \right) \right)}^{\dfrac{1}{n}}}........\left( 2 \right) \\
\end{align}\]
We cannot put a limit to the equation $\left( 2 \right)$ as well, because the limit is not defined till now.
So, taking log to both sides of equation $\left( 2 \right)$
$\log y=\underset{x\to \infty }{\mathop{\lim }}\,\log {{\left( \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right)......\left( 2+\dfrac{n}{n} \right) \right)}^{\dfrac{1}{n}}}$
As we know property of logarithm as
$\begin{align}
& \log {{a}^{m}}=m\log a \\
& \log ab=\log a+\log b \\
\end{align}$
From the above relation (later one), we can write this equation for $n$ values as;
$\log \left( {{x}_{1}}{{x}_{2}}......{{x}_{n}} \right)=\log {{x}_{1}}+\log {{x}_{2}}+\log {{x}_{3}}+.......\log {{x}_{n}}$
Hence, using the above properties of logarithm with the equation $'\log y'$ we get
$\begin{align}
& \log =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\log \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right).....\left( 2+\dfrac{n}{n} \right) \\
& \log =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \log \left( 2+\dfrac{1}{n} \right)+\log \left( 2+\dfrac{2}{n} \right)+\log \left( 2+\dfrac{3}{n} \right)+............\log \left( 2+\dfrac{n}{n} \right) \right)........\left( 3 \right) \\
\end{align}$
Now, as we have learnt in integration that we can convert any infinite series with summation to integral by using limit as a sum concept.
So, let us first write equation $\left( 3 \right)$ in form of limit as sum:
$\log y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 2+\dfrac{r}{n} \right)............\left( 4 \right)}$
We have learnt that if any summation given as;
$\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{f\left( a+\dfrac{r}{n} \right)}$
Then we can convert this series into integral by replacing
$\begin{align}
& \dfrac{1}{n}\text{ to }dx \\
& \dfrac{r}{n}\text{ to }x \\
\end{align}$
Lower limit = put $n\to \infty \text{ with }\left( \dfrac{r}{n} \right)$
Upper limit = put maximum value of$\text{ }r\text{ in }\left( \dfrac{r}{n} \right)$
Hence, we can convert equation $\left( 4 \right)$ as
\[\begin{align}
& \log y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 2+\dfrac{r}{n} \right)} \\
& \text{upper limit=}1\left( \dfrac{r}{n}=\dfrac{n}{n}=1 \right) \\
& \text{lower limit=0}\left( {}_{n\to \infty }\dfrac{r}{n}=0 \right) \\
\end{align}\]
$\log y=\int_{0}^{1}{\log \left( 2+x \right)dx.............\left( 5 \right)}$
Above integration can be solved by integration by parts which can be expressed as, if we have two functions in multiplication as $\int{f\left( x \right)g\left( x \right)dx}$may be different to each other (Example: one trigonometric and another algebraic) then we can calculate the integration by using relation$\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx-\int{f'\left( x \right)\int{g\left( x \right)dx.dx.........\left( 6 \right)}}}$
Applying integration by parts as expressed in equation $\left( 6 \right)$ with equation $\left( 5 \right)$, as
$f\left( x \right)=1\And g\left( x \right)=\log \left( 2+x \right)$.
$\begin{align}
& \log y=\int_{0}^{1}{1.\log \left( 2+x \right)dx} \\
& \log y=\log \left( 2+x \right)\int_{0}^{1}{1dx}-\int_{0}^{1}{\dfrac{d}{dx}\left( \log \left( 2+x \right)\int{1dx} \right)dx} \\
\end{align}$
We know
\[\begin{align}
& \int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}} \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
\end{align}\]
Therefore,
\[\begin{align}
& \log y=x\log \left( 2+x \right)\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.-\int_{0}^{1}{\dfrac{1}{2+x}\left( x \right)dx} \\
& \log y=\left( 1\log 3-0 \right)-\int_{0}^{1}{\dfrac{x}{2+x}dx} \\
& \log y=\log 3-\int_{0}^{1}{\left( \dfrac{\left( 2+x \right)-2}{2+x} \right)}dx \\
& \log y=\log 3-\int_{0}^{1}{\left( 1-\dfrac{2}{2+x} \right)}dx \\
& \log y=\log 3=\int_{0}^{1}{1dx+2}\int_{0}^{1}{\dfrac{1}{2+x}dx} \\
& \int{\dfrac{1}{x}dx}=\log x={{\log }_{e}}x \\
& \log y=\log 3-x\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+2\log \left( 2+x \right)\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right. \\
& \log y=\log 3-1+2\log 3-2\log 2 \\
& \log y=3\log 3-2\log 2-1..............\left( 7 \right) \\
\end{align}\]
We know that,
$\log {{a}^{m}}=m\log a$ or vice versa
$\begin{align}
& \log y=\log {{3}^{3}}-\log {{2}^{2}}-1 \\
& \log y=\log 27-\log 4-1.............\left( 8 \right) \\
\end{align}$
We also have property of logarithm as
$\begin{align}
& \log a-\log b=\log \left( \dfrac{a}{b} \right) \\
& \log {{a}^{a}}=1 \\
\end{align}$
As, equation $\left( 8 \right)$ have log with (default) base $e$ , so we can replace $1\text{ to }\log {{e}^{e}}$
$\begin{align}
& \log {{e}^{y}}=\log e\dfrac{27}{4}-\log {{e}^{e}} \\
& \log y=\log \dfrac{27}{4e} \\
\end{align}$
Therefore,
$y=\dfrac{27}{4e}$ by comparison.
Note: This question does not belong to limit and differentiability chapter but from limit as a sum concept of integrals. It is the key point of this question to get a solution.
One can go wrong while calculating lower limit and upper limit which is defined as
Lower limit$=$ put $n\to \infty \text{ with }\left( \dfrac{r}{n} \right)$
Upper limit$=$ put maximum value of$\text{ }r\text{ in }\left( \dfrac{r}{n} \right)$
Integration of $\log \left( 2+x \right)$ is also an important step. As we need to multiply by $1$ for applying integration by parts.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
