
Let ${{P}_{n}}=\sqrt[n]{\dfrac{\left( 3n \right)!}{\left( 2n \right)!}}\left( n=1,2,3...... \right)$ then find $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{P}_{n}}}{n}$
Answer
610.2k+ views
Hint: Simplify the given limit then apply limit as a sum concept of integral chapter.
Hence, we have equation;
${{P}_{n}}={{\left( \dfrac{3n!}{2n!} \right)}^{\dfrac{1}{n}}}\left( n=1,2,3...... \right)$
And we have to find $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{P}_{n}}}{n}$i.e.
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{\left( 3n \right)!}{\left( 2n \right)!} \right)}^{\dfrac{1}{n}}}\]
Let us suppose the above relation as
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{3n!}{2n!} \right)}^{\dfrac{1}{n}}}.........\left( 1 \right)$
We cannot directly put a limit to the given function as $n$ is not defined.
We need to first simplify the given relation.
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{\left( 3n \right)\left( 3n-1 \right)\left( 3n-2 \right)........1}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)........1} \right)}^{\dfrac{1}{n}}}$
Let us write $\left( 3n \right)!$ in reverse order
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{1.2.3................3n}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)..........2.1} \right)}^{\dfrac{1}{n}}}$
As we know that $\left( 2n<3n \right)$ ; hence $2n$ will come in between $1\And 3n$ . Hence, we can rewrite the above relation as;
\[y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{1.2.3.4......\left( 2n \right)\left( 2n+1 \right)\left( 2n+2 \right)......3n}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right).........2.1} \right)}^{\dfrac{1}{n}}}\]
Now, by simplifying the above equation, we can observe that $\left( 2n \right)!$ is common in numerator and denominator. Hence, we can cancel out them and we get the above equation as;
$y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( 2n+1 \right)\left( 2n+2 \right)\left( 2n+3 \right)........3n}{{n}^{n}} \right)}^{\dfrac{1}{n}}}$
Now, let us take the denominator $'n'$ to the bracket of numerators. $'n'$ will be converted to ${{n}^{n}}$ as power of numerator is $\dfrac{1}{n}$.
Therefore, $y$can be written as;
\[\begin{align}
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( 2n+1 \right)\left( 2n+2 \right).....3n}{{{n}^{n}}} \right)}^{\dfrac{1}{n}}} \\
& \because {{n}^{n}}=n.n.n.n....\left( n\text{ number of times} \right) \\
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \left( \dfrac{2n+1}{n} \right)\left( \dfrac{2n+2}{n} \right)......\left( \dfrac{3n}{n} \right) \right)}^{\dfrac{1}{n}}} \\
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right).........\left( 2+\dfrac{n}{n} \right) \right)}^{\dfrac{1}{n}}}........\left( 2 \right) \\
\end{align}\]
We cannot put a limit to the equation $\left( 2 \right)$ as well, because the limit is not defined till now.
So, taking log to both sides of equation $\left( 2 \right)$
$\log y=\underset{x\to \infty }{\mathop{\lim }}\,\log {{\left( \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right)......\left( 2+\dfrac{n}{n} \right) \right)}^{\dfrac{1}{n}}}$
As we know property of logarithm as
$\begin{align}
& \log {{a}^{m}}=m\log a \\
& \log ab=\log a+\log b \\
\end{align}$
From the above relation (later one), we can write this equation for $n$ values as;
$\log \left( {{x}_{1}}{{x}_{2}}......{{x}_{n}} \right)=\log {{x}_{1}}+\log {{x}_{2}}+\log {{x}_{3}}+.......\log {{x}_{n}}$
Hence, using the above properties of logarithm with the equation $'\log y'$ we get
$\begin{align}
& \log =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\log \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right).....\left( 2+\dfrac{n}{n} \right) \\
& \log =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \log \left( 2+\dfrac{1}{n} \right)+\log \left( 2+\dfrac{2}{n} \right)+\log \left( 2+\dfrac{3}{n} \right)+............\log \left( 2+\dfrac{n}{n} \right) \right)........\left( 3 \right) \\
\end{align}$
Now, as we have learnt in integration that we can convert any infinite series with summation to integral by using limit as a sum concept.
So, let us first write equation $\left( 3 \right)$ in form of limit as sum:
$\log y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 2+\dfrac{r}{n} \right)............\left( 4 \right)}$
We have learnt that if any summation given as;
$\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{f\left( a+\dfrac{r}{n} \right)}$
Then we can convert this series into integral by replacing
$\begin{align}
& \dfrac{1}{n}\text{ to }dx \\
& \dfrac{r}{n}\text{ to }x \\
\end{align}$
Lower limit = put $n\to \infty \text{ with }\left( \dfrac{r}{n} \right)$
Upper limit = put maximum value of$\text{ }r\text{ in }\left( \dfrac{r}{n} \right)$
Hence, we can convert equation $\left( 4 \right)$ as
\[\begin{align}
& \log y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 2+\dfrac{r}{n} \right)} \\
& \text{upper limit=}1\left( \dfrac{r}{n}=\dfrac{n}{n}=1 \right) \\
& \text{lower limit=0}\left( {}_{n\to \infty }\dfrac{r}{n}=0 \right) \\
\end{align}\]
$\log y=\int_{0}^{1}{\log \left( 2+x \right)dx.............\left( 5 \right)}$
Above integration can be solved by integration by parts which can be expressed as, if we have two functions in multiplication as $\int{f\left( x \right)g\left( x \right)dx}$may be different to each other (Example: one trigonometric and another algebraic) then we can calculate the integration by using relation$\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx-\int{f'\left( x \right)\int{g\left( x \right)dx.dx.........\left( 6 \right)}}}$
Applying integration by parts as expressed in equation $\left( 6 \right)$ with equation $\left( 5 \right)$, as
$f\left( x \right)=1\And g\left( x \right)=\log \left( 2+x \right)$.
$\begin{align}
& \log y=\int_{0}^{1}{1.\log \left( 2+x \right)dx} \\
& \log y=\log \left( 2+x \right)\int_{0}^{1}{1dx}-\int_{0}^{1}{\dfrac{d}{dx}\left( \log \left( 2+x \right)\int{1dx} \right)dx} \\
\end{align}$
We know
\[\begin{align}
& \int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}} \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
\end{align}\]
Therefore,
\[\begin{align}
& \log y=x\log \left( 2+x \right)\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.-\int_{0}^{1}{\dfrac{1}{2+x}\left( x \right)dx} \\
& \log y=\left( 1\log 3-0 \right)-\int_{0}^{1}{\dfrac{x}{2+x}dx} \\
& \log y=\log 3-\int_{0}^{1}{\left( \dfrac{\left( 2+x \right)-2}{2+x} \right)}dx \\
& \log y=\log 3-\int_{0}^{1}{\left( 1-\dfrac{2}{2+x} \right)}dx \\
& \log y=\log 3=\int_{0}^{1}{1dx+2}\int_{0}^{1}{\dfrac{1}{2+x}dx} \\
& \int{\dfrac{1}{x}dx}=\log x={{\log }_{e}}x \\
& \log y=\log 3-x\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+2\log \left( 2+x \right)\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right. \\
& \log y=\log 3-1+2\log 3-2\log 2 \\
& \log y=3\log 3-2\log 2-1..............\left( 7 \right) \\
\end{align}\]
We know that,
$\log {{a}^{m}}=m\log a$ or vice versa
$\begin{align}
& \log y=\log {{3}^{3}}-\log {{2}^{2}}-1 \\
& \log y=\log 27-\log 4-1.............\left( 8 \right) \\
\end{align}$
We also have property of logarithm as
$\begin{align}
& \log a-\log b=\log \left( \dfrac{a}{b} \right) \\
& \log {{a}^{a}}=1 \\
\end{align}$
As, equation $\left( 8 \right)$ have log with (default) base $e$ , so we can replace $1\text{ to }\log {{e}^{e}}$
$\begin{align}
& \log {{e}^{y}}=\log e\dfrac{27}{4}-\log {{e}^{e}} \\
& \log y=\log \dfrac{27}{4e} \\
\end{align}$
Therefore,
$y=\dfrac{27}{4e}$ by comparison.
Note: This question does not belong to limit and differentiability chapter but from limit as a sum concept of integrals. It is the key point of this question to get a solution.
One can go wrong while calculating lower limit and upper limit which is defined as
Lower limit$=$ put $n\to \infty \text{ with }\left( \dfrac{r}{n} \right)$
Upper limit$=$ put maximum value of$\text{ }r\text{ in }\left( \dfrac{r}{n} \right)$
Integration of $\log \left( 2+x \right)$ is also an important step. As we need to multiply by $1$ for applying integration by parts.
Hence, we have equation;
${{P}_{n}}={{\left( \dfrac{3n!}{2n!} \right)}^{\dfrac{1}{n}}}\left( n=1,2,3...... \right)$
And we have to find $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{P}_{n}}}{n}$i.e.
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{\left( 3n \right)!}{\left( 2n \right)!} \right)}^{\dfrac{1}{n}}}\]
Let us suppose the above relation as
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{3n!}{2n!} \right)}^{\dfrac{1}{n}}}.........\left( 1 \right)$
We cannot directly put a limit to the given function as $n$ is not defined.
We need to first simplify the given relation.
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{\left( 3n \right)\left( 3n-1 \right)\left( 3n-2 \right)........1}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)........1} \right)}^{\dfrac{1}{n}}}$
Let us write $\left( 3n \right)!$ in reverse order
$y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{1.2.3................3n}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)..........2.1} \right)}^{\dfrac{1}{n}}}$
As we know that $\left( 2n<3n \right)$ ; hence $2n$ will come in between $1\And 3n$ . Hence, we can rewrite the above relation as;
\[y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}{{\left( \dfrac{1.2.3.4......\left( 2n \right)\left( 2n+1 \right)\left( 2n+2 \right)......3n}{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right).........2.1} \right)}^{\dfrac{1}{n}}}\]
Now, by simplifying the above equation, we can observe that $\left( 2n \right)!$ is common in numerator and denominator. Hence, we can cancel out them and we get the above equation as;
$y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( 2n+1 \right)\left( 2n+2 \right)\left( 2n+3 \right)........3n}{{n}^{n}} \right)}^{\dfrac{1}{n}}}$
Now, let us take the denominator $'n'$ to the bracket of numerators. $'n'$ will be converted to ${{n}^{n}}$ as power of numerator is $\dfrac{1}{n}$.
Therefore, $y$can be written as;
\[\begin{align}
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{\left( 2n+1 \right)\left( 2n+2 \right).....3n}{{{n}^{n}}} \right)}^{\dfrac{1}{n}}} \\
& \because {{n}^{n}}=n.n.n.n....\left( n\text{ number of times} \right) \\
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \left( \dfrac{2n+1}{n} \right)\left( \dfrac{2n+2}{n} \right)......\left( \dfrac{3n}{n} \right) \right)}^{\dfrac{1}{n}}} \\
& y=\underset{n\to \infty }{\mathop{\lim }}\,{{\left( \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right).........\left( 2+\dfrac{n}{n} \right) \right)}^{\dfrac{1}{n}}}........\left( 2 \right) \\
\end{align}\]
We cannot put a limit to the equation $\left( 2 \right)$ as well, because the limit is not defined till now.
So, taking log to both sides of equation $\left( 2 \right)$
$\log y=\underset{x\to \infty }{\mathop{\lim }}\,\log {{\left( \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right)......\left( 2+\dfrac{n}{n} \right) \right)}^{\dfrac{1}{n}}}$
As we know property of logarithm as
$\begin{align}
& \log {{a}^{m}}=m\log a \\
& \log ab=\log a+\log b \\
\end{align}$
From the above relation (later one), we can write this equation for $n$ values as;
$\log \left( {{x}_{1}}{{x}_{2}}......{{x}_{n}} \right)=\log {{x}_{1}}+\log {{x}_{2}}+\log {{x}_{3}}+.......\log {{x}_{n}}$
Hence, using the above properties of logarithm with the equation $'\log y'$ we get
$\begin{align}
& \log =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\log \left( 2+\dfrac{1}{n} \right)\left( 2+\dfrac{2}{n} \right)\left( 2+\dfrac{3}{n} \right).....\left( 2+\dfrac{n}{n} \right) \\
& \log =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left( \log \left( 2+\dfrac{1}{n} \right)+\log \left( 2+\dfrac{2}{n} \right)+\log \left( 2+\dfrac{3}{n} \right)+............\log \left( 2+\dfrac{n}{n} \right) \right)........\left( 3 \right) \\
\end{align}$
Now, as we have learnt in integration that we can convert any infinite series with summation to integral by using limit as a sum concept.
So, let us first write equation $\left( 3 \right)$ in form of limit as sum:
$\log y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 2+\dfrac{r}{n} \right)............\left( 4 \right)}$
We have learnt that if any summation given as;
$\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{f\left( a+\dfrac{r}{n} \right)}$
Then we can convert this series into integral by replacing
$\begin{align}
& \dfrac{1}{n}\text{ to }dx \\
& \dfrac{r}{n}\text{ to }x \\
\end{align}$
Lower limit = put $n\to \infty \text{ with }\left( \dfrac{r}{n} \right)$
Upper limit = put maximum value of$\text{ }r\text{ in }\left( \dfrac{r}{n} \right)$
Hence, we can convert equation $\left( 4 \right)$ as
\[\begin{align}
& \log y=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 2+\dfrac{r}{n} \right)} \\
& \text{upper limit=}1\left( \dfrac{r}{n}=\dfrac{n}{n}=1 \right) \\
& \text{lower limit=0}\left( {}_{n\to \infty }\dfrac{r}{n}=0 \right) \\
\end{align}\]
$\log y=\int_{0}^{1}{\log \left( 2+x \right)dx.............\left( 5 \right)}$
Above integration can be solved by integration by parts which can be expressed as, if we have two functions in multiplication as $\int{f\left( x \right)g\left( x \right)dx}$may be different to each other (Example: one trigonometric and another algebraic) then we can calculate the integration by using relation$\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx-\int{f'\left( x \right)\int{g\left( x \right)dx.dx.........\left( 6 \right)}}}$
Applying integration by parts as expressed in equation $\left( 6 \right)$ with equation $\left( 5 \right)$, as
$f\left( x \right)=1\And g\left( x \right)=\log \left( 2+x \right)$.
$\begin{align}
& \log y=\int_{0}^{1}{1.\log \left( 2+x \right)dx} \\
& \log y=\log \left( 2+x \right)\int_{0}^{1}{1dx}-\int_{0}^{1}{\dfrac{d}{dx}\left( \log \left( 2+x \right)\int{1dx} \right)dx} \\
\end{align}$
We know
\[\begin{align}
& \int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}} \\
& \dfrac{d}{dx}\log x=\dfrac{1}{x} \\
\end{align}\]
Therefore,
\[\begin{align}
& \log y=x\log \left( 2+x \right)\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.-\int_{0}^{1}{\dfrac{1}{2+x}\left( x \right)dx} \\
& \log y=\left( 1\log 3-0 \right)-\int_{0}^{1}{\dfrac{x}{2+x}dx} \\
& \log y=\log 3-\int_{0}^{1}{\left( \dfrac{\left( 2+x \right)-2}{2+x} \right)}dx \\
& \log y=\log 3-\int_{0}^{1}{\left( 1-\dfrac{2}{2+x} \right)}dx \\
& \log y=\log 3=\int_{0}^{1}{1dx+2}\int_{0}^{1}{\dfrac{1}{2+x}dx} \\
& \int{\dfrac{1}{x}dx}=\log x={{\log }_{e}}x \\
& \log y=\log 3-x\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+2\log \left( 2+x \right)\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right. \\
& \log y=\log 3-1+2\log 3-2\log 2 \\
& \log y=3\log 3-2\log 2-1..............\left( 7 \right) \\
\end{align}\]
We know that,
$\log {{a}^{m}}=m\log a$ or vice versa
$\begin{align}
& \log y=\log {{3}^{3}}-\log {{2}^{2}}-1 \\
& \log y=\log 27-\log 4-1.............\left( 8 \right) \\
\end{align}$
We also have property of logarithm as
$\begin{align}
& \log a-\log b=\log \left( \dfrac{a}{b} \right) \\
& \log {{a}^{a}}=1 \\
\end{align}$
As, equation $\left( 8 \right)$ have log with (default) base $e$ , so we can replace $1\text{ to }\log {{e}^{e}}$
$\begin{align}
& \log {{e}^{y}}=\log e\dfrac{27}{4}-\log {{e}^{e}} \\
& \log y=\log \dfrac{27}{4e} \\
\end{align}$
Therefore,
$y=\dfrac{27}{4e}$ by comparison.
Note: This question does not belong to limit and differentiability chapter but from limit as a sum concept of integrals. It is the key point of this question to get a solution.
One can go wrong while calculating lower limit and upper limit which is defined as
Lower limit$=$ put $n\to \infty \text{ with }\left( \dfrac{r}{n} \right)$
Upper limit$=$ put maximum value of$\text{ }r\text{ in }\left( \dfrac{r}{n} \right)$
Integration of $\log \left( 2+x \right)$ is also an important step. As we need to multiply by $1$ for applying integration by parts.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

