Answer
Verified
391.5k+ views
Hint: Here, the given question is about to prove that p is true using the method of contrapositive, given statement is Let p: If x is an integer and \[{{x}^{2}}\]is even, then x is even. Based on the given statement, we need to prove that p is true, and also, we are going to discuss the types of if-then statements and also what is the contraceptive statement.
Complete step-by-step solution:
Given an if-then statement like ‘if p, then q.’ we can explain three statements.
A conditional statement consists of two elements, a hypothesis in the ‘if’ clause and a conclusion in the ‘then’ clause. For example, ‘if its rains, then they cancel going out.’
Hypothesis is ‘it rains’.
Conclusion is ‘they cancel going out.’
This is the conditional statement, we can form converse, inverse and contrapositive statements of the conditional statements.
To create a converse of the conditional statement, interchange the hypothesis and conclusion.
Example: The converse of ‘if it rains, then they cancel going out’ is ‘if they cancel going out, then it rains.’
To create the inverse of the conditional statement, taking the negation of both the hypothesis and the conclusion.
The inverse of ‘if it rains, then they cancel going out’ is ‘if it doesn’t rain, then they don’t cancel going out.’
To create the contrapositive of a conditional statement, interchanging the hypothesis and the conclusion of the inverse statement is essential.
The contrapositive of ‘if it rains, then they cancel going out’ is ‘if they don’t cancel going out, then it doesn’t rain.’
According to the given question:
p: If x is an integer and \[{{x}^{2}}\]is even, then x is even.
Let q: x is an integer and \[{{x}^{2}}\] is even
r: x is even
to prove that p is true by contrapositive method we assume that r is false and prove that q is also false.
Let x is not even
To prove that q is false, it has to be proved that x is not an integer or \[{{x}^{2}}\]is even
x is not even implying that \[{{x}^{2}}\]is not even
Therefore, statement q is false.
Thus, the given statement p is true.
Note: Before solving these kinds of questions, we need to learn about the conditional statement’s basics, it can help us to solve the contrapositive statements easily.
Statement: if a, then b.
Converse: if b, then a.
Inverse: if not a, then not b.
Contrapositive: if not b, then not a.
Complete step-by-step solution:
Given an if-then statement like ‘if p, then q.’ we can explain three statements.
A conditional statement consists of two elements, a hypothesis in the ‘if’ clause and a conclusion in the ‘then’ clause. For example, ‘if its rains, then they cancel going out.’
Hypothesis is ‘it rains’.
Conclusion is ‘they cancel going out.’
This is the conditional statement, we can form converse, inverse and contrapositive statements of the conditional statements.
To create a converse of the conditional statement, interchange the hypothesis and conclusion.
Example: The converse of ‘if it rains, then they cancel going out’ is ‘if they cancel going out, then it rains.’
To create the inverse of the conditional statement, taking the negation of both the hypothesis and the conclusion.
The inverse of ‘if it rains, then they cancel going out’ is ‘if it doesn’t rain, then they don’t cancel going out.’
To create the contrapositive of a conditional statement, interchanging the hypothesis and the conclusion of the inverse statement is essential.
The contrapositive of ‘if it rains, then they cancel going out’ is ‘if they don’t cancel going out, then it doesn’t rain.’
According to the given question:
p: If x is an integer and \[{{x}^{2}}\]is even, then x is even.
Let q: x is an integer and \[{{x}^{2}}\] is even
r: x is even
to prove that p is true by contrapositive method we assume that r is false and prove that q is also false.
Let x is not even
To prove that q is false, it has to be proved that x is not an integer or \[{{x}^{2}}\]is even
x is not even implying that \[{{x}^{2}}\]is not even
Therefore, statement q is false.
Thus, the given statement p is true.
Note: Before solving these kinds of questions, we need to learn about the conditional statement’s basics, it can help us to solve the contrapositive statements easily.
Statement: if a, then b.
Converse: if b, then a.
Inverse: if not a, then not b.
Contrapositive: if not b, then not a.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE