
Let $\overrightarrow u $ be a vector coplanar with the vectors $\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$ and $\overrightarrow b = \widehat j + \widehat k$ . If $\overrightarrow u $ is perpendicular to $\overrightarrow a $ and $\overrightarrow u .\overrightarrow b = 24$ , then ${\left| u \right|^2}$ is equal to
A. $256$
B. $84$
C. $336$
D. $315$
Answer
549.6k+ views
Hint: At first, we need to assume $\overrightarrow u $ as a variable vector. Then, get an equation in terms of that variables by using the statement that $\overrightarrow u $is a vector coplanar with the vectors $\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$ and $\overrightarrow b = \widehat j + \widehat k$ . Form the second equation by using the information that$\overrightarrow u $ is perpendicular to $\overrightarrow a $ and the third equation by $\overrightarrow u .\overrightarrow b = 24$ and solve these equations.
Complete step-by-step solution:
Here in this problem, we are given three coplanar vectors $\overrightarrow u ,\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k{\text{ and }}\overrightarrow b = \widehat j + \widehat k$. We also know that $\overrightarrow u $ is perpendicular to $\overrightarrow a $ and $\overrightarrow u .\overrightarrow b = 24$. Using this given information, we need to find the value of ${\left| u \right|^2}$
Let us assume that $\overrightarrow u = x\widehat i + y\widehat j + z\widehat k$
We already know $\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$ and $\overrightarrow b = \widehat j + \widehat k$
Now we know that it is coplanar with $\overrightarrow a ,\overrightarrow b $. It means that the determinant formed by $\overrightarrow u ,\overrightarrow a ,\overrightarrow b $is equal to zero.
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
x&y&z \\
2&3&{ - 1} \\
0&1&1
\end{array}} \right| = 0$
The determinant can be solved as $\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left( {ei - hf} \right) - b\left( {di - fg} \right) + c\left( {dh - eg} \right)$
Therefore, we get:
$ \Rightarrow x(3 + 1) - y(2 + 0) + z(2 - 0) = 0 \Rightarrow 4x - 2y + 2z = 0$$ - - - - (1)$
Now form the second equation by using the information that $\overrightarrow u $ is perpendicular to $\overrightarrow a $
This statement implies that:
$ \Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (2\widehat i + 3\widehat j - \widehat k) = 0$ , which is the dot or scalar product of vector $\overrightarrow u $ and $\overrightarrow a $
Now let’s solve it to get:
$ \Rightarrow 2x + 3y - z = 0$$ - - - - (2)$
At last, we will use $\overrightarrow u .\overrightarrow b = 24$
$ \Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (\widehat j + \widehat k) = 24 \Rightarrow y + z = 24$$ - - - - - (3)$
Adding (2) and (3), we get
$ \Rightarrow 2x + 3y - z + y + z = 0 + 24 \Rightarrow 2x + 4y = 24$
On dividing the whole equation by two, we get:
$ \Rightarrow x + 2y = 12$$ - - - - - (4)$
Multiplying equation (3) by $2$and subtracting it to (2)
$ \Rightarrow 4x - 4y = 48 \Rightarrow x - y = - 12$$ - - - - - - (5)$
Subtracting equation (5) from (4), we get:
$ \Rightarrow 3y = 24 \Rightarrow y = 8$
Using it in equation (5), we obtain $x = - 4$
Substituting it in (2), we can find the value for ‘z’
$ \Rightarrow (2)( - 4) + (3)(8) - z = 0 \Rightarrow z = 16$
Therefore, we can write the vector $\overrightarrow u = - 4\widehat i + 8\widehat j + 16\widehat k$
The expression \[\left| u \right|\] represents the magnitude of the vector, which can be given by the square root of the sum of the squares of the direction ratios, i.e.
$ \Rightarrow \left| {\overrightarrow u } \right| = \sqrt {{{( - 4)}^2} + {8^2} + {{16}^2}} = \sqrt {16 + 64 + 256} = \sqrt {336} $
So the required expression ${\left| u \right|^2}$ can be written as:
$ \Rightarrow {\left| u \right|^2} = \left| u \right| \times \left| u \right| = {\left( {\sqrt {336} } \right)^2} = 336$
Thus, the value of the required expression is ${\left| u \right|^2} = 336$
Hence, the option (C) is the correct answer.
Note: The key to solving this question was the formation of the equation $\left( 1 \right)$ which is to figure out the meaning of vectors being coplanar. The dot product of two vectors $\vec a{\text{ and }}\vec b$ is given by $\vec a \cdot \vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $ , where ‘theta’ represents the angle between two vectors. So when we find the dot product of two perpendicular vectors, we get $\cos \dfrac{\pi }{2} = 0 \Rightarrow \vec a \cdot \vec b = \left| a \right|\left| b \right| \times 0 = 0$ .
Complete step-by-step solution:
Here in this problem, we are given three coplanar vectors $\overrightarrow u ,\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k{\text{ and }}\overrightarrow b = \widehat j + \widehat k$. We also know that $\overrightarrow u $ is perpendicular to $\overrightarrow a $ and $\overrightarrow u .\overrightarrow b = 24$. Using this given information, we need to find the value of ${\left| u \right|^2}$
Let us assume that $\overrightarrow u = x\widehat i + y\widehat j + z\widehat k$
We already know $\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$ and $\overrightarrow b = \widehat j + \widehat k$
Now we know that it is coplanar with $\overrightarrow a ,\overrightarrow b $. It means that the determinant formed by $\overrightarrow u ,\overrightarrow a ,\overrightarrow b $is equal to zero.
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
x&y&z \\
2&3&{ - 1} \\
0&1&1
\end{array}} \right| = 0$
The determinant can be solved as $\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left( {ei - hf} \right) - b\left( {di - fg} \right) + c\left( {dh - eg} \right)$
Therefore, we get:
$ \Rightarrow x(3 + 1) - y(2 + 0) + z(2 - 0) = 0 \Rightarrow 4x - 2y + 2z = 0$$ - - - - (1)$
Now form the second equation by using the information that $\overrightarrow u $ is perpendicular to $\overrightarrow a $
This statement implies that:
$ \Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (2\widehat i + 3\widehat j - \widehat k) = 0$ , which is the dot or scalar product of vector $\overrightarrow u $ and $\overrightarrow a $
Now let’s solve it to get:
$ \Rightarrow 2x + 3y - z = 0$$ - - - - (2)$
At last, we will use $\overrightarrow u .\overrightarrow b = 24$
$ \Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (\widehat j + \widehat k) = 24 \Rightarrow y + z = 24$$ - - - - - (3)$
Adding (2) and (3), we get
$ \Rightarrow 2x + 3y - z + y + z = 0 + 24 \Rightarrow 2x + 4y = 24$
On dividing the whole equation by two, we get:
$ \Rightarrow x + 2y = 12$$ - - - - - (4)$
Multiplying equation (3) by $2$and subtracting it to (2)
$ \Rightarrow 4x - 4y = 48 \Rightarrow x - y = - 12$$ - - - - - - (5)$
Subtracting equation (5) from (4), we get:
$ \Rightarrow 3y = 24 \Rightarrow y = 8$
Using it in equation (5), we obtain $x = - 4$
Substituting it in (2), we can find the value for ‘z’
$ \Rightarrow (2)( - 4) + (3)(8) - z = 0 \Rightarrow z = 16$
Therefore, we can write the vector $\overrightarrow u = - 4\widehat i + 8\widehat j + 16\widehat k$
The expression \[\left| u \right|\] represents the magnitude of the vector, which can be given by the square root of the sum of the squares of the direction ratios, i.e.
$ \Rightarrow \left| {\overrightarrow u } \right| = \sqrt {{{( - 4)}^2} + {8^2} + {{16}^2}} = \sqrt {16 + 64 + 256} = \sqrt {336} $
So the required expression ${\left| u \right|^2}$ can be written as:
$ \Rightarrow {\left| u \right|^2} = \left| u \right| \times \left| u \right| = {\left( {\sqrt {336} } \right)^2} = 336$
Thus, the value of the required expression is ${\left| u \right|^2} = 336$
Hence, the option (C) is the correct answer.
Note: The key to solving this question was the formation of the equation $\left( 1 \right)$ which is to figure out the meaning of vectors being coplanar. The dot product of two vectors $\vec a{\text{ and }}\vec b$ is given by $\vec a \cdot \vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $ , where ‘theta’ represents the angle between two vectors. So when we find the dot product of two perpendicular vectors, we get $\cos \dfrac{\pi }{2} = 0 \Rightarrow \vec a \cdot \vec b = \left| a \right|\left| b \right| \times 0 = 0$ .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

