
Let $\overrightarrow u $ be a vector coplanar with the vectors $\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$ and $\overrightarrow b = \widehat j + \widehat k$ . If $\overrightarrow u $ is perpendicular to $\overrightarrow a $ and $\overrightarrow u .\overrightarrow b = 24$ , then ${\left| u \right|^2}$ is equal to
A. $256$
B. $84$
C. $336$
D. $315$
Answer
563.7k+ views
Hint: At first, we need to assume $\overrightarrow u $ as a variable vector. Then, get an equation in terms of that variables by using the statement that $\overrightarrow u $is a vector coplanar with the vectors $\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$ and $\overrightarrow b = \widehat j + \widehat k$ . Form the second equation by using the information that$\overrightarrow u $ is perpendicular to $\overrightarrow a $ and the third equation by $\overrightarrow u .\overrightarrow b = 24$ and solve these equations.
Complete step-by-step solution:
Here in this problem, we are given three coplanar vectors $\overrightarrow u ,\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k{\text{ and }}\overrightarrow b = \widehat j + \widehat k$. We also know that $\overrightarrow u $ is perpendicular to $\overrightarrow a $ and $\overrightarrow u .\overrightarrow b = 24$. Using this given information, we need to find the value of ${\left| u \right|^2}$
Let us assume that $\overrightarrow u = x\widehat i + y\widehat j + z\widehat k$
We already know $\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$ and $\overrightarrow b = \widehat j + \widehat k$
Now we know that it is coplanar with $\overrightarrow a ,\overrightarrow b $. It means that the determinant formed by $\overrightarrow u ,\overrightarrow a ,\overrightarrow b $is equal to zero.
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
x&y&z \\
2&3&{ - 1} \\
0&1&1
\end{array}} \right| = 0$
The determinant can be solved as $\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left( {ei - hf} \right) - b\left( {di - fg} \right) + c\left( {dh - eg} \right)$
Therefore, we get:
$ \Rightarrow x(3 + 1) - y(2 + 0) + z(2 - 0) = 0 \Rightarrow 4x - 2y + 2z = 0$$ - - - - (1)$
Now form the second equation by using the information that $\overrightarrow u $ is perpendicular to $\overrightarrow a $
This statement implies that:
$ \Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (2\widehat i + 3\widehat j - \widehat k) = 0$ , which is the dot or scalar product of vector $\overrightarrow u $ and $\overrightarrow a $
Now let’s solve it to get:
$ \Rightarrow 2x + 3y - z = 0$$ - - - - (2)$
At last, we will use $\overrightarrow u .\overrightarrow b = 24$
$ \Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (\widehat j + \widehat k) = 24 \Rightarrow y + z = 24$$ - - - - - (3)$
Adding (2) and (3), we get
$ \Rightarrow 2x + 3y - z + y + z = 0 + 24 \Rightarrow 2x + 4y = 24$
On dividing the whole equation by two, we get:
$ \Rightarrow x + 2y = 12$$ - - - - - (4)$
Multiplying equation (3) by $2$and subtracting it to (2)
$ \Rightarrow 4x - 4y = 48 \Rightarrow x - y = - 12$$ - - - - - - (5)$
Subtracting equation (5) from (4), we get:
$ \Rightarrow 3y = 24 \Rightarrow y = 8$
Using it in equation (5), we obtain $x = - 4$
Substituting it in (2), we can find the value for ‘z’
$ \Rightarrow (2)( - 4) + (3)(8) - z = 0 \Rightarrow z = 16$
Therefore, we can write the vector $\overrightarrow u = - 4\widehat i + 8\widehat j + 16\widehat k$
The expression \[\left| u \right|\] represents the magnitude of the vector, which can be given by the square root of the sum of the squares of the direction ratios, i.e.
$ \Rightarrow \left| {\overrightarrow u } \right| = \sqrt {{{( - 4)}^2} + {8^2} + {{16}^2}} = \sqrt {16 + 64 + 256} = \sqrt {336} $
So the required expression ${\left| u \right|^2}$ can be written as:
$ \Rightarrow {\left| u \right|^2} = \left| u \right| \times \left| u \right| = {\left( {\sqrt {336} } \right)^2} = 336$
Thus, the value of the required expression is ${\left| u \right|^2} = 336$
Hence, the option (C) is the correct answer.
Note: The key to solving this question was the formation of the equation $\left( 1 \right)$ which is to figure out the meaning of vectors being coplanar. The dot product of two vectors $\vec a{\text{ and }}\vec b$ is given by $\vec a \cdot \vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $ , where ‘theta’ represents the angle between two vectors. So when we find the dot product of two perpendicular vectors, we get $\cos \dfrac{\pi }{2} = 0 \Rightarrow \vec a \cdot \vec b = \left| a \right|\left| b \right| \times 0 = 0$ .
Complete step-by-step solution:
Here in this problem, we are given three coplanar vectors $\overrightarrow u ,\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k{\text{ and }}\overrightarrow b = \widehat j + \widehat k$. We also know that $\overrightarrow u $ is perpendicular to $\overrightarrow a $ and $\overrightarrow u .\overrightarrow b = 24$. Using this given information, we need to find the value of ${\left| u \right|^2}$
Let us assume that $\overrightarrow u = x\widehat i + y\widehat j + z\widehat k$
We already know $\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k$ and $\overrightarrow b = \widehat j + \widehat k$
Now we know that it is coplanar with $\overrightarrow a ,\overrightarrow b $. It means that the determinant formed by $\overrightarrow u ,\overrightarrow a ,\overrightarrow b $is equal to zero.
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
x&y&z \\
2&3&{ - 1} \\
0&1&1
\end{array}} \right| = 0$
The determinant can be solved as $\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left( {ei - hf} \right) - b\left( {di - fg} \right) + c\left( {dh - eg} \right)$
Therefore, we get:
$ \Rightarrow x(3 + 1) - y(2 + 0) + z(2 - 0) = 0 \Rightarrow 4x - 2y + 2z = 0$$ - - - - (1)$
Now form the second equation by using the information that $\overrightarrow u $ is perpendicular to $\overrightarrow a $
This statement implies that:
$ \Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (2\widehat i + 3\widehat j - \widehat k) = 0$ , which is the dot or scalar product of vector $\overrightarrow u $ and $\overrightarrow a $
Now let’s solve it to get:
$ \Rightarrow 2x + 3y - z = 0$$ - - - - (2)$
At last, we will use $\overrightarrow u .\overrightarrow b = 24$
$ \Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (\widehat j + \widehat k) = 24 \Rightarrow y + z = 24$$ - - - - - (3)$
Adding (2) and (3), we get
$ \Rightarrow 2x + 3y - z + y + z = 0 + 24 \Rightarrow 2x + 4y = 24$
On dividing the whole equation by two, we get:
$ \Rightarrow x + 2y = 12$$ - - - - - (4)$
Multiplying equation (3) by $2$and subtracting it to (2)
$ \Rightarrow 4x - 4y = 48 \Rightarrow x - y = - 12$$ - - - - - - (5)$
Subtracting equation (5) from (4), we get:
$ \Rightarrow 3y = 24 \Rightarrow y = 8$
Using it in equation (5), we obtain $x = - 4$
Substituting it in (2), we can find the value for ‘z’
$ \Rightarrow (2)( - 4) + (3)(8) - z = 0 \Rightarrow z = 16$
Therefore, we can write the vector $\overrightarrow u = - 4\widehat i + 8\widehat j + 16\widehat k$
The expression \[\left| u \right|\] represents the magnitude of the vector, which can be given by the square root of the sum of the squares of the direction ratios, i.e.
$ \Rightarrow \left| {\overrightarrow u } \right| = \sqrt {{{( - 4)}^2} + {8^2} + {{16}^2}} = \sqrt {16 + 64 + 256} = \sqrt {336} $
So the required expression ${\left| u \right|^2}$ can be written as:
$ \Rightarrow {\left| u \right|^2} = \left| u \right| \times \left| u \right| = {\left( {\sqrt {336} } \right)^2} = 336$
Thus, the value of the required expression is ${\left| u \right|^2} = 336$
Hence, the option (C) is the correct answer.
Note: The key to solving this question was the formation of the equation $\left( 1 \right)$ which is to figure out the meaning of vectors being coplanar. The dot product of two vectors $\vec a{\text{ and }}\vec b$ is given by $\vec a \cdot \vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $ , where ‘theta’ represents the angle between two vectors. So when we find the dot product of two perpendicular vectors, we get $\cos \dfrac{\pi }{2} = 0 \Rightarrow \vec a \cdot \vec b = \left| a \right|\left| b \right| \times 0 = 0$ .
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

