
Let $\overrightarrow n $ be a vector of magnitude $3\sqrt 3 $ such that it makes equal acute angles with the coordinate axes. Find the vector equation and also cartesian form of the equation of a plane passing through $\left( { - 1,1,2} \right)$ and normal to $\overrightarrow n $.
Answer
573.6k+ views
Hint:
We will first find the value of cosine of angle made by the vector with the $x$ axis using the given condition and the property that ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$, where $\alpha ,\beta ,\gamma $ are the angles made by the vector with the $x,y,z$ axis respectively. Then, find the value of vector $\overrightarrow n $. Next, represent the equation of plane in vector form as $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$, where $\overrightarrow r $ is any vector on plane, $\overrightarrow p $ is the vector represented by the given point.
Complete step by step solution:
Let the vector $\overrightarrow n $ makes angle $\alpha ,\beta ,\gamma $ be acute angles made with $x,y,z$ axis respectively.
Now, we know that the square of the sum of cosines of the angles made by the vector with each axis is equal to 1
That is, ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$
We are given that all the angles are equal, then $\alpha = \beta = \gamma $
Hence, we will have
$
{\cos ^2}\alpha + {\cos ^2}\alpha + {\cos ^2}\alpha = 1 \\
\Rightarrow 3{\cos ^2}\alpha = 1 \\
\Rightarrow {\cos ^2}\alpha = \dfrac{1}{3} \\
\Rightarrow \cos \alpha = \pm \dfrac{1}{{\sqrt 3 }} \\
$
But, $\alpha $ is an acute angle, then,
$\cos \alpha = \dfrac{1}{{\sqrt 3 }}$
The vector $\overrightarrow n $ can be calculated using the property,
\[\overrightarrow n = \left| {\overrightarrow n } \right|\left( {\cos \alpha \hat i + \cos \beta \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \cos \gamma \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)\]
We are also given that the magnitude of the vector $\overrightarrow n $ is $3\sqrt 3 $
And each of the angle is equal with the value $\cos \alpha = \dfrac{1}{{\sqrt 3 }}$
Then, we will have,
$
\overrightarrow n = 3\sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) \\
\Rightarrow \overrightarrow n = 3\left( {\hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) \\
$
Therefore, the vector $\overrightarrow n = 3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $
But, we have to find the equation of the plane , where the plane passes through $\left( { - 1,1,2} \right)$
Let $\overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ be any vector on the plane and the vector represented by the given point be $\overrightarrow p = - \hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 2\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $
Also, vector $\overrightarrow n $ has to normal to the plane.
Then, $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$ represents the required plane.
On substituting the values in the above formula, we will get,
$
\left( {\left( {x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) - \left( { - \hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 2\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)} \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) = 0 \\
\Rightarrow \left( {\left( {x + 1} \right)\hat i + \left( {y - 1} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \left( {z - 2} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) = 0 \\
\Rightarrow 3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\
$
On simplifying the above brackets, we will get,
$
3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\
\Rightarrow 3x + 3 + 3y - 3 + 3z - 6 = 0 \\
\Rightarrow 3x + 3y + 3z - 6 = 0 \\
\Rightarrow x + y + z - 2 = 0 \\
$
Hence, the equation of the plane in the cartesian form is $x + y + z - 2 = 0$
Note:
If there is a plane and let $\overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ be any vector on plane and plane is passing through $P\left( {a,b,c} \right)$ which can be represented as $\overrightarrow p = a\hat i + b\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + c\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ , and there is a normal $\overrightarrow n $ to the plane, then the equation of plane is given as $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$
We will first find the value of cosine of angle made by the vector with the $x$ axis using the given condition and the property that ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$, where $\alpha ,\beta ,\gamma $ are the angles made by the vector with the $x,y,z$ axis respectively. Then, find the value of vector $\overrightarrow n $. Next, represent the equation of plane in vector form as $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$, where $\overrightarrow r $ is any vector on plane, $\overrightarrow p $ is the vector represented by the given point.
Complete step by step solution:
Let the vector $\overrightarrow n $ makes angle $\alpha ,\beta ,\gamma $ be acute angles made with $x,y,z$ axis respectively.
Now, we know that the square of the sum of cosines of the angles made by the vector with each axis is equal to 1
That is, ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$
We are given that all the angles are equal, then $\alpha = \beta = \gamma $
Hence, we will have
$
{\cos ^2}\alpha + {\cos ^2}\alpha + {\cos ^2}\alpha = 1 \\
\Rightarrow 3{\cos ^2}\alpha = 1 \\
\Rightarrow {\cos ^2}\alpha = \dfrac{1}{3} \\
\Rightarrow \cos \alpha = \pm \dfrac{1}{{\sqrt 3 }} \\
$
But, $\alpha $ is an acute angle, then,
$\cos \alpha = \dfrac{1}{{\sqrt 3 }}$
The vector $\overrightarrow n $ can be calculated using the property,
\[\overrightarrow n = \left| {\overrightarrow n } \right|\left( {\cos \alpha \hat i + \cos \beta \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \cos \gamma \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)\]
We are also given that the magnitude of the vector $\overrightarrow n $ is $3\sqrt 3 $
And each of the angle is equal with the value $\cos \alpha = \dfrac{1}{{\sqrt 3 }}$
Then, we will have,
$
\overrightarrow n = 3\sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) \\
\Rightarrow \overrightarrow n = 3\left( {\hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) \\
$
Therefore, the vector $\overrightarrow n = 3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $
But, we have to find the equation of the plane , where the plane passes through $\left( { - 1,1,2} \right)$
Let $\overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ be any vector on the plane and the vector represented by the given point be $\overrightarrow p = - \hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 2\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $
Also, vector $\overrightarrow n $ has to normal to the plane.
Then, $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$ represents the required plane.
On substituting the values in the above formula, we will get,
$
\left( {\left( {x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) - \left( { - \hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 2\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)} \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) = 0 \\
\Rightarrow \left( {\left( {x + 1} \right)\hat i + \left( {y - 1} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \left( {z - 2} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) = 0 \\
\Rightarrow 3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\
$
On simplifying the above brackets, we will get,
$
3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\
\Rightarrow 3x + 3 + 3y - 3 + 3z - 6 = 0 \\
\Rightarrow 3x + 3y + 3z - 6 = 0 \\
\Rightarrow x + y + z - 2 = 0 \\
$
Hence, the equation of the plane in the cartesian form is $x + y + z - 2 = 0$
Note:
If there is a plane and let $\overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ be any vector on plane and plane is passing through $P\left( {a,b,c} \right)$ which can be represented as $\overrightarrow p = a\hat i + b\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + c\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ , and there is a normal $\overrightarrow n $ to the plane, then the equation of plane is given as $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

