
Let $\overrightarrow n $ be a vector of magnitude $3\sqrt 3 $ such that it makes equal acute angles with the coordinate axes. Find the vector equation and also cartesian form of the equation of a plane passing through $\left( { - 1,1,2} \right)$ and normal to $\overrightarrow n $.
Answer
510k+ views
Hint:
We will first find the value of cosine of angle made by the vector with the $x$ axis using the given condition and the property that ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$, where $\alpha ,\beta ,\gamma $ are the angles made by the vector with the $x,y,z$ axis respectively. Then, find the value of vector $\overrightarrow n $. Next, represent the equation of plane in vector form as $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$, where $\overrightarrow r $ is any vector on plane, $\overrightarrow p $ is the vector represented by the given point.
Complete step by step solution:
Let the vector $\overrightarrow n $ makes angle $\alpha ,\beta ,\gamma $ be acute angles made with $x,y,z$ axis respectively.
Now, we know that the square of the sum of cosines of the angles made by the vector with each axis is equal to 1
That is, ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$
We are given that all the angles are equal, then $\alpha = \beta = \gamma $
Hence, we will have
$
{\cos ^2}\alpha + {\cos ^2}\alpha + {\cos ^2}\alpha = 1 \\
\Rightarrow 3{\cos ^2}\alpha = 1 \\
\Rightarrow {\cos ^2}\alpha = \dfrac{1}{3} \\
\Rightarrow \cos \alpha = \pm \dfrac{1}{{\sqrt 3 }} \\
$
But, $\alpha $ is an acute angle, then,
$\cos \alpha = \dfrac{1}{{\sqrt 3 }}$
The vector $\overrightarrow n $ can be calculated using the property,
\[\overrightarrow n = \left| {\overrightarrow n } \right|\left( {\cos \alpha \hat i + \cos \beta \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \cos \gamma \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)\]
We are also given that the magnitude of the vector $\overrightarrow n $ is $3\sqrt 3 $
And each of the angle is equal with the value $\cos \alpha = \dfrac{1}{{\sqrt 3 }}$
Then, we will have,
$
\overrightarrow n = 3\sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) \\
\Rightarrow \overrightarrow n = 3\left( {\hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) \\
$
Therefore, the vector $\overrightarrow n = 3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $
But, we have to find the equation of the plane , where the plane passes through $\left( { - 1,1,2} \right)$
Let $\overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ be any vector on the plane and the vector represented by the given point be $\overrightarrow p = - \hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 2\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $
Also, vector $\overrightarrow n $ has to normal to the plane.
Then, $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$ represents the required plane.
On substituting the values in the above formula, we will get,
$
\left( {\left( {x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) - \left( { - \hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 2\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)} \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) = 0 \\
\Rightarrow \left( {\left( {x + 1} \right)\hat i + \left( {y - 1} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \left( {z - 2} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) = 0 \\
\Rightarrow 3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\
$
On simplifying the above brackets, we will get,
$
3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\
\Rightarrow 3x + 3 + 3y - 3 + 3z - 6 = 0 \\
\Rightarrow 3x + 3y + 3z - 6 = 0 \\
\Rightarrow x + y + z - 2 = 0 \\
$
Hence, the equation of the plane in the cartesian form is $x + y + z - 2 = 0$
Note:
If there is a plane and let $\overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ be any vector on plane and plane is passing through $P\left( {a,b,c} \right)$ which can be represented as $\overrightarrow p = a\hat i + b\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + c\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ , and there is a normal $\overrightarrow n $ to the plane, then the equation of plane is given as $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$
We will first find the value of cosine of angle made by the vector with the $x$ axis using the given condition and the property that ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$, where $\alpha ,\beta ,\gamma $ are the angles made by the vector with the $x,y,z$ axis respectively. Then, find the value of vector $\overrightarrow n $. Next, represent the equation of plane in vector form as $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$, where $\overrightarrow r $ is any vector on plane, $\overrightarrow p $ is the vector represented by the given point.
Complete step by step solution:
Let the vector $\overrightarrow n $ makes angle $\alpha ,\beta ,\gamma $ be acute angles made with $x,y,z$ axis respectively.
Now, we know that the square of the sum of cosines of the angles made by the vector with each axis is equal to 1
That is, ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$
We are given that all the angles are equal, then $\alpha = \beta = \gamma $
Hence, we will have
$
{\cos ^2}\alpha + {\cos ^2}\alpha + {\cos ^2}\alpha = 1 \\
\Rightarrow 3{\cos ^2}\alpha = 1 \\
\Rightarrow {\cos ^2}\alpha = \dfrac{1}{3} \\
\Rightarrow \cos \alpha = \pm \dfrac{1}{{\sqrt 3 }} \\
$
But, $\alpha $ is an acute angle, then,
$\cos \alpha = \dfrac{1}{{\sqrt 3 }}$
The vector $\overrightarrow n $ can be calculated using the property,
\[\overrightarrow n = \left| {\overrightarrow n } \right|\left( {\cos \alpha \hat i + \cos \beta \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \cos \gamma \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)\]
We are also given that the magnitude of the vector $\overrightarrow n $ is $3\sqrt 3 $
And each of the angle is equal with the value $\cos \alpha = \dfrac{1}{{\sqrt 3 }}$
Then, we will have,
$
\overrightarrow n = 3\sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) \\
\Rightarrow \overrightarrow n = 3\left( {\hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) \\
$
Therefore, the vector $\overrightarrow n = 3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $
But, we have to find the equation of the plane , where the plane passes through $\left( { - 1,1,2} \right)$
Let $\overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ be any vector on the plane and the vector represented by the given point be $\overrightarrow p = - \hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 2\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $
Also, vector $\overrightarrow n $ has to normal to the plane.
Then, $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$ represents the required plane.
On substituting the values in the above formula, we will get,
$
\left( {\left( {x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) - \left( { - \hat i + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 2\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)} \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) = 0 \\
\Rightarrow \left( {\left( {x + 1} \right)\hat i + \left( {y - 1} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \left( {z - 2} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + 3\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right) = 0 \\
\Rightarrow 3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\
$
On simplifying the above brackets, we will get,
$
3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\
\Rightarrow 3x + 3 + 3y - 3 + 3z - 6 = 0 \\
\Rightarrow 3x + 3y + 3z - 6 = 0 \\
\Rightarrow x + y + z - 2 = 0 \\
$
Hence, the equation of the plane in the cartesian form is $x + y + z - 2 = 0$
Note:

If there is a plane and let $\overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + z\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ be any vector on plane and plane is passing through $P\left( {a,b,c} \right)$ which can be represented as $\overrightarrow p = a\hat i + b\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + c\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} $ , and there is a normal $\overrightarrow n $ to the plane, then the equation of plane is given as $\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
