
Let, $\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$, then the value of the determinant $\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|$ is,
Answer
570.9k+ views
Hint: In this particular question use the concept of cube root of unity, and use some of the properties of cube root of unity which is given as, ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$, so, first expand the determinant then apply these properties to simplify so use these concepts to reach the solution of the question.
Complete step by step answer:
$\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$
Now we have to find out the value of $\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|$
Now as we know that the properties of cube root of unity are ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$, so first simplify the determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{\omega .{\omega ^3}}
\end{array}} \right|$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right|$
Now expand the determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 1\left| {\begin{array}{*{20}{c}}
{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
{{\omega ^2}}&\omega
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
1&{{\omega ^2}} \\
1&\omega
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
1&{ - 1 - {\omega ^2}} \\
1&{{\omega ^2}}
\end{array}} \right|$
Now expand the mini determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 1\left( {\omega \left( { - 1 - {\omega ^2}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right) - 1\left( {\omega - {\omega ^2}} \right) + 1\left( {{\omega ^2} - \left( { - 1 - {\omega ^2}} \right)} \right)$
Now simplify it we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = \left( { - \omega - {\omega ^3}} \right) - \left( {{\omega ^4}} \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - \omega - {\omega ^3} - \left( {\omega .{\omega ^3}} \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - \omega - 1 - \left( \omega \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$, $\left[ {\because {\omega ^3} = 1} \right]$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3\omega + 3{\omega ^2} = 3\left( {{\omega ^2} - \omega } \right)$
Now as we know that $1 + \omega + {\omega ^2} = 0$
\[ \Rightarrow {\omega ^2} = - \left( {1 + \omega } \right)\]
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 3\left( { - 1 - \omega - \omega } \right)$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 3\left( { - 1 - 2\omega } \right) = - 3 - 6\omega $
Now substitute the value of $\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3 - 6\left( { - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3 - \left( { - 3 + i3\sqrt 3 } \right) = - i3\sqrt 3 $
So this is the required value of the determinant.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic properties of cube root of unity which is stated above, and also recall how to expand the determinant, so first simplify the determinant using the properties then expand the determinant as above then again apply the properties and simplify and at last substitute the value of $\omega $ we will get the required answer.
Complete step by step answer:
$\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$
Now we have to find out the value of $\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|$
Now as we know that the properties of cube root of unity are ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$, so first simplify the determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{\omega .{\omega ^3}}
\end{array}} \right|$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right|$
Now expand the determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 1\left| {\begin{array}{*{20}{c}}
{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
{{\omega ^2}}&\omega
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
1&{{\omega ^2}} \\
1&\omega
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
1&{ - 1 - {\omega ^2}} \\
1&{{\omega ^2}}
\end{array}} \right|$
Now expand the mini determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 1\left( {\omega \left( { - 1 - {\omega ^2}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right) - 1\left( {\omega - {\omega ^2}} \right) + 1\left( {{\omega ^2} - \left( { - 1 - {\omega ^2}} \right)} \right)$
Now simplify it we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = \left( { - \omega - {\omega ^3}} \right) - \left( {{\omega ^4}} \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - \omega - {\omega ^3} - \left( {\omega .{\omega ^3}} \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - \omega - 1 - \left( \omega \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$, $\left[ {\because {\omega ^3} = 1} \right]$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3\omega + 3{\omega ^2} = 3\left( {{\omega ^2} - \omega } \right)$
Now as we know that $1 + \omega + {\omega ^2} = 0$
\[ \Rightarrow {\omega ^2} = - \left( {1 + \omega } \right)\]
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 3\left( { - 1 - \omega - \omega } \right)$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 3\left( { - 1 - 2\omega } \right) = - 3 - 6\omega $
Now substitute the value of $\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3 - 6\left( { - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3 - \left( { - 3 + i3\sqrt 3 } \right) = - i3\sqrt 3 $
So this is the required value of the determinant.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic properties of cube root of unity which is stated above, and also recall how to expand the determinant, so first simplify the determinant using the properties then expand the determinant as above then again apply the properties and simplify and at last substitute the value of $\omega $ we will get the required answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

