
Let, $\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$, then the value of the determinant $\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|$ is,
Answer
582.3k+ views
Hint: In this particular question use the concept of cube root of unity, and use some of the properties of cube root of unity which is given as, ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$, so, first expand the determinant then apply these properties to simplify so use these concepts to reach the solution of the question.
Complete step by step answer:
$\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$
Now we have to find out the value of $\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|$
Now as we know that the properties of cube root of unity are ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$, so first simplify the determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{\omega .{\omega ^3}}
\end{array}} \right|$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right|$
Now expand the determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 1\left| {\begin{array}{*{20}{c}}
{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
{{\omega ^2}}&\omega
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
1&{{\omega ^2}} \\
1&\omega
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
1&{ - 1 - {\omega ^2}} \\
1&{{\omega ^2}}
\end{array}} \right|$
Now expand the mini determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 1\left( {\omega \left( { - 1 - {\omega ^2}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right) - 1\left( {\omega - {\omega ^2}} \right) + 1\left( {{\omega ^2} - \left( { - 1 - {\omega ^2}} \right)} \right)$
Now simplify it we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = \left( { - \omega - {\omega ^3}} \right) - \left( {{\omega ^4}} \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - \omega - {\omega ^3} - \left( {\omega .{\omega ^3}} \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - \omega - 1 - \left( \omega \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$, $\left[ {\because {\omega ^3} = 1} \right]$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3\omega + 3{\omega ^2} = 3\left( {{\omega ^2} - \omega } \right)$
Now as we know that $1 + \omega + {\omega ^2} = 0$
\[ \Rightarrow {\omega ^2} = - \left( {1 + \omega } \right)\]
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 3\left( { - 1 - \omega - \omega } \right)$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 3\left( { - 1 - 2\omega } \right) = - 3 - 6\omega $
Now substitute the value of $\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3 - 6\left( { - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3 - \left( { - 3 + i3\sqrt 3 } \right) = - i3\sqrt 3 $
So this is the required value of the determinant.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic properties of cube root of unity which is stated above, and also recall how to expand the determinant, so first simplify the determinant using the properties then expand the determinant as above then again apply the properties and simplify and at last substitute the value of $\omega $ we will get the required answer.
Complete step by step answer:
$\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$
Now we have to find out the value of $\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|$
Now as we know that the properties of cube root of unity are ${\omega ^3} = 1,1 + \omega + {\omega ^2} = 0$, so first simplify the determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{\omega .{\omega ^3}}
\end{array}} \right|$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right|$
Now expand the determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 1\left| {\begin{array}{*{20}{c}}
{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
{{\omega ^2}}&\omega
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
1&{{\omega ^2}} \\
1&\omega
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
1&{ - 1 - {\omega ^2}} \\
1&{{\omega ^2}}
\end{array}} \right|$
Now expand the mini determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 1\left( {\omega \left( { - 1 - {\omega ^2}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right) - 1\left( {\omega - {\omega ^2}} \right) + 1\left( {{\omega ^2} - \left( { - 1 - {\omega ^2}} \right)} \right)$
Now simplify it we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = \left( { - \omega - {\omega ^3}} \right) - \left( {{\omega ^4}} \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - \omega - {\omega ^3} - \left( {\omega .{\omega ^3}} \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - \omega - 1 - \left( \omega \right) - \omega + {\omega ^2} + {\omega ^2} + 1 + {\omega ^2}$, $\left[ {\because {\omega ^3} = 1} \right]$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3\omega + 3{\omega ^2} = 3\left( {{\omega ^2} - \omega } \right)$
Now as we know that $1 + \omega + {\omega ^2} = 0$
\[ \Rightarrow {\omega ^2} = - \left( {1 + \omega } \right)\]
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 3\left( { - 1 - \omega - \omega } \right)$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = 3\left( { - 1 - 2\omega } \right) = - 3 - 6\omega $
Now substitute the value of $\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3 - 6\left( { - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&\omega
\end{array}} \right| = - 3 - \left( { - 3 + i3\sqrt 3 } \right) = - i3\sqrt 3 $
So this is the required value of the determinant.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic properties of cube root of unity which is stated above, and also recall how to expand the determinant, so first simplify the determinant using the properties then expand the determinant as above then again apply the properties and simplify and at last substitute the value of $\omega $ we will get the required answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

