Let $\omega =\cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right)$ and $\alpha =\omega +{{\omega }^{2}}+{{\omega }^{4}}$ and $\beta ={{\omega }^{3}}+{{\omega }^{5}}+{{\omega }^{6}}$.
Find the value of $\alpha +\beta $.
(a) 0
(b) ─1
(c) ─2
(d) 1
Answer
Verified
469.5k+ views
Hint: To solve this question, we will first try to find the value of \[~{{\omega }^{2}}\], \[~{{\omega }^{3}}\] and so on and try to get a general term for \[~{{\omega }^{n}}\] , where n is any integer. If we are able to find such a term, we can add $\alpha $ and $\beta $ directly, because if we add these both, we get a series which is in geometric progression. Then we will use the formula for sum of n terms of geometric series given as ${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$, where a is the first term of the geometric series and r is the common difference of the series. It is to be kept in mind that ${{i}^{2}}=-1$.
Complete step by step answer:
It is given to us that $\omega =\cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right)$.
To find \[~{{\omega }^{2}}\], we shall square both sides of the equation.
$\begin{align}
& \Rightarrow {{\omega }^{2}}={{\left( \cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow {{\omega }^{2}}={{\cos }^{2}}\left( \dfrac{2\pi }{7} \right)+{{\left( i \right)}^{2}}{{\sin }^{2}}\left( \dfrac{2\pi }{7} \right)+2i\cos \left( \dfrac{2\pi }{7} \right)\sin \left( \dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{2}}={{\cos }^{2}}\left( \dfrac{2\pi }{7} \right)-{{\sin }^{2}}\left( \dfrac{2\pi }{7} \right)+i\left( 2\sin \left( \dfrac{2\pi }{7} \right)\cos \left( \dfrac{2\pi }{7} \right) \right) \\
\end{align}$
From trigonometry we know that ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta $ and we also know that $2\sin \theta \cos \theta =\sin 2\theta $.
$\Rightarrow {{\omega }^{2}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)......\left( 1 \right)$
Now to find the value of \[~{{\omega }^{3}}\], we shall multiply the value of \[~{{\omega }^{2}}\] with \[~\omega \].
\[\begin{align}
& \Rightarrow {{\omega }^{2}}.\omega =\left[ \cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right) \right]\left[ \cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right) \right] \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)+i\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)+{{\left( i \right)}^{2}}\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)-\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\left[ \cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right) \right] \\
\end{align}\]
But from trigonometry, we know that $\cos A\cos B-\sin A\sin B=\cos \left( A+B \right)$ and we also that $\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)$. We will use these two properties in the above equation.
\[\begin{align}
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right)+\dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right)+\dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 3\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 3\left( \dfrac{2\pi }{7} \right) \right)......\left( 2 \right) \\
\end{align}\]
From (1) and (2), we can safely say that \[{{\omega }^{n}}=\cos \left( n\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( n\left( \dfrac{2\pi }{7} \right) \right)......\left( 3 \right)\]
We are given that $\alpha =\omega +{{\omega }^{2}}+{{\omega }^{4}}$ and $\beta ={{\omega }^{3}}+{{\omega }^{5}}+{{\omega }^{6}}$.
Therefore $\alpha +\beta =\omega +{{\omega }^{2}}+{{\omega }^{3}}+{{\omega }^{4}}+{{\omega }^{5}}+{{\omega }^{6}}$
We can see that this series is in geometric progression with 6 terms, where the first terms as \[~\omega \] and common difference is \[~\omega \].
We know that the sum of n terms of GP is given as ${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$, where a is the first term of the geometric series and r is the common difference of the series.
Hence, $\omega +{{\omega }^{2}}+{{\omega }^{3}}+{{\omega }^{4}}+{{\omega }^{5}}+{{\omega }^{6}}=\dfrac{\omega \left( {{\omega }^{6}}-1 \right)}{\omega -1}$
$\Rightarrow \alpha +\beta =\dfrac{\left( {{\omega }^{7}}-\omega \right)}{\omega -1}$
Now, if we substitute n = 7, \[{{\omega }^{7}}=\cos \left( 7\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 7\left( \dfrac{2\pi }{7} \right) \right)\]
\[\Rightarrow {{\omega }^{7}}=1\]
$\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{\left( 1-\omega \right)}{\omega -1} \\
& \Rightarrow \alpha +\beta =\dfrac{-1\left( \omega -1 \right)}{\omega -1} \\
& \Rightarrow \alpha +\beta =-1 \\
\end{align}$
So, the correct answer is “Option B”.
Note: In complex numbers, $\cos \theta +i\sin \theta $ is usually represented as ${{e}^{i\theta }}$. Hence, ${{\left( \cos \theta +i\sin \theta \right)}^{2}}={{e}^{2i\theta }}=\cos 2\theta +i\sin 2\theta $. Similarly, if we want to find ${{\left( \cos \theta +i\sin \theta \right)}^{n}}$, it can be directly represented by ${{\left( \cos \theta +i\sin \theta \right)}^{n}}={{e}^{ni\theta }}=\cos n\theta +i\sin n\theta $.
Complete step by step answer:
It is given to us that $\omega =\cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right)$.
To find \[~{{\omega }^{2}}\], we shall square both sides of the equation.
$\begin{align}
& \Rightarrow {{\omega }^{2}}={{\left( \cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow {{\omega }^{2}}={{\cos }^{2}}\left( \dfrac{2\pi }{7} \right)+{{\left( i \right)}^{2}}{{\sin }^{2}}\left( \dfrac{2\pi }{7} \right)+2i\cos \left( \dfrac{2\pi }{7} \right)\sin \left( \dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{2}}={{\cos }^{2}}\left( \dfrac{2\pi }{7} \right)-{{\sin }^{2}}\left( \dfrac{2\pi }{7} \right)+i\left( 2\sin \left( \dfrac{2\pi }{7} \right)\cos \left( \dfrac{2\pi }{7} \right) \right) \\
\end{align}$
From trigonometry we know that ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta $ and we also know that $2\sin \theta \cos \theta =\sin 2\theta $.
$\Rightarrow {{\omega }^{2}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)......\left( 1 \right)$
Now to find the value of \[~{{\omega }^{3}}\], we shall multiply the value of \[~{{\omega }^{2}}\] with \[~\omega \].
\[\begin{align}
& \Rightarrow {{\omega }^{2}}.\omega =\left[ \cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right) \right]\left[ \cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right) \right] \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)+i\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)+{{\left( i \right)}^{2}}\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)-\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\left[ \cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right) \right] \\
\end{align}\]
But from trigonometry, we know that $\cos A\cos B-\sin A\sin B=\cos \left( A+B \right)$ and we also that $\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)$. We will use these two properties in the above equation.
\[\begin{align}
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right)+\dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right)+\dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 3\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 3\left( \dfrac{2\pi }{7} \right) \right)......\left( 2 \right) \\
\end{align}\]
From (1) and (2), we can safely say that \[{{\omega }^{n}}=\cos \left( n\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( n\left( \dfrac{2\pi }{7} \right) \right)......\left( 3 \right)\]
We are given that $\alpha =\omega +{{\omega }^{2}}+{{\omega }^{4}}$ and $\beta ={{\omega }^{3}}+{{\omega }^{5}}+{{\omega }^{6}}$.
Therefore $\alpha +\beta =\omega +{{\omega }^{2}}+{{\omega }^{3}}+{{\omega }^{4}}+{{\omega }^{5}}+{{\omega }^{6}}$
We can see that this series is in geometric progression with 6 terms, where the first terms as \[~\omega \] and common difference is \[~\omega \].
We know that the sum of n terms of GP is given as ${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$, where a is the first term of the geometric series and r is the common difference of the series.
Hence, $\omega +{{\omega }^{2}}+{{\omega }^{3}}+{{\omega }^{4}}+{{\omega }^{5}}+{{\omega }^{6}}=\dfrac{\omega \left( {{\omega }^{6}}-1 \right)}{\omega -1}$
$\Rightarrow \alpha +\beta =\dfrac{\left( {{\omega }^{7}}-\omega \right)}{\omega -1}$
Now, if we substitute n = 7, \[{{\omega }^{7}}=\cos \left( 7\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 7\left( \dfrac{2\pi }{7} \right) \right)\]
\[\Rightarrow {{\omega }^{7}}=1\]
$\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{\left( 1-\omega \right)}{\omega -1} \\
& \Rightarrow \alpha +\beta =\dfrac{-1\left( \omega -1 \right)}{\omega -1} \\
& \Rightarrow \alpha +\beta =-1 \\
\end{align}$
So, the correct answer is “Option B”.
Note: In complex numbers, $\cos \theta +i\sin \theta $ is usually represented as ${{e}^{i\theta }}$. Hence, ${{\left( \cos \theta +i\sin \theta \right)}^{2}}={{e}^{2i\theta }}=\cos 2\theta +i\sin 2\theta $. Similarly, if we want to find ${{\left( \cos \theta +i\sin \theta \right)}^{n}}$, it can be directly represented by ${{\left( \cos \theta +i\sin \theta \right)}^{n}}={{e}^{ni\theta }}=\cos n\theta +i\sin n\theta $.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE