
Let L= ${\lim _{x \to 0}}$ $\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$, $a > 0$. If L is finite, then
(THIS QUESTION HAS MULTIPLE CORRECT OPTIONS)
A. a=2
B. a=1
C. L=$\dfrac{1}{{64}}$
D. L=$\dfrac{1}{{32}}$
Answer
513k+ views
Hint: To solve this question, we need to know the basic theory related to the chapter limits. As we know, when we put $x \to 0$, we will get an indeterminate form. Thus, here we will manipulate the given expression in such a way that we will get its approaching value or limit value.
Complete step-by-step answer:
As given in the question,
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
It is to be noted that, on substituting the value $x \to 0$ directly to the function, the numerator as well as denominator will become 0, and we know the value $\dfrac{0}{0}$, does not exist.
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}{{\left( {{\text{1 - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Here, we use the expansion of ${\left( {1 + x} \right)^n}$.
As we know, ${\left( {1 + x} \right)^n}$= $1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + ......$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}{\text{ - 1}}} \right)}}{{\text{2}}}{{\left( {{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\text{2}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\dfrac{{{\text{ - 1}}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{4}}}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{a}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{3}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Limit is finite when
$ \Rightarrow $$\dfrac{1}{{2a}} = \dfrac{1}{4}$
$ \Rightarrow $${\text{a = 2}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{64}}$
$\therefore L$$ = \dfrac{1}{{64}},a = 2$
Therefore, option (A) and (C) are the correct answer.
Note: A function may approach two different limits. One where the variable approaches its limit through values larger than the limit and the other where the variable approaches its limit through values smaller than the limit. In such a case, the limit is not defined but the right and left-hand limit exist.
Complete step-by-step answer:
As given in the question,
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
It is to be noted that, on substituting the value $x \to 0$ directly to the function, the numerator as well as denominator will become 0, and we know the value $\dfrac{0}{0}$, does not exist.
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}{{\left( {{\text{1 - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Here, we use the expansion of ${\left( {1 + x} \right)^n}$.
As we know, ${\left( {1 + x} \right)^n}$= $1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + ......$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}{\text{ - 1}}} \right)}}{{\text{2}}}{{\left( {{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\text{2}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\dfrac{{{\text{ - 1}}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{4}}}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{a}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{3}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Limit is finite when
$ \Rightarrow $$\dfrac{1}{{2a}} = \dfrac{1}{4}$
$ \Rightarrow $${\text{a = 2}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{64}}$
$\therefore L$$ = \dfrac{1}{{64}},a = 2$
Therefore, option (A) and (C) are the correct answer.
Note: A function may approach two different limits. One where the variable approaches its limit through values larger than the limit and the other where the variable approaches its limit through values smaller than the limit. In such a case, the limit is not defined but the right and left-hand limit exist.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
