
Let L= ${\lim _{x \to 0}}$ $\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$, $a > 0$. If L is finite, then
(THIS QUESTION HAS MULTIPLE CORRECT OPTIONS)
A. a=2
B. a=1
C. L=$\dfrac{1}{{64}}$
D. L=$\dfrac{1}{{32}}$
Answer
579.9k+ views
Hint: To solve this question, we need to know the basic theory related to the chapter limits. As we know, when we put $x \to 0$, we will get an indeterminate form. Thus, here we will manipulate the given expression in such a way that we will get its approaching value or limit value.
Complete step-by-step answer:
As given in the question,
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
It is to be noted that, on substituting the value $x \to 0$ directly to the function, the numerator as well as denominator will become 0, and we know the value $\dfrac{0}{0}$, does not exist.
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}{{\left( {{\text{1 - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Here, we use the expansion of ${\left( {1 + x} \right)^n}$.
As we know, ${\left( {1 + x} \right)^n}$= $1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + ......$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}{\text{ - 1}}} \right)}}{{\text{2}}}{{\left( {{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\text{2}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\dfrac{{{\text{ - 1}}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{4}}}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{a}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{3}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Limit is finite when
$ \Rightarrow $$\dfrac{1}{{2a}} = \dfrac{1}{4}$
$ \Rightarrow $${\text{a = 2}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{64}}$
$\therefore L$$ = \dfrac{1}{{64}},a = 2$
Therefore, option (A) and (C) are the correct answer.
Note: A function may approach two different limits. One where the variable approaches its limit through values larger than the limit and the other where the variable approaches its limit through values smaller than the limit. In such a case, the limit is not defined but the right and left-hand limit exist.
Complete step-by-step answer:
As given in the question,
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
It is to be noted that, on substituting the value $x \to 0$ directly to the function, the numerator as well as denominator will become 0, and we know the value $\dfrac{0}{0}$, does not exist.
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}{{\left( {{\text{1 - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Here, we use the expansion of ${\left( {1 + x} \right)^n}$.
As we know, ${\left( {1 + x} \right)^n}$= $1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + ......$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}{\text{ - 1}}} \right)}}{{\text{2}}}{{\left( {{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\text{2}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\dfrac{{{\text{ - 1}}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{4}}}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{a}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{3}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Limit is finite when
$ \Rightarrow $$\dfrac{1}{{2a}} = \dfrac{1}{4}$
$ \Rightarrow $${\text{a = 2}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{64}}$
$\therefore L$$ = \dfrac{1}{{64}},a = 2$
Therefore, option (A) and (C) are the correct answer.
Note: A function may approach two different limits. One where the variable approaches its limit through values larger than the limit and the other where the variable approaches its limit through values smaller than the limit. In such a case, the limit is not defined but the right and left-hand limit exist.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

