
Let L= ${\lim _{x \to 0}}$ $\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$, $a > 0$. If L is finite, then
(THIS QUESTION HAS MULTIPLE CORRECT OPTIONS)
A. a=2
B. a=1
C. L=$\dfrac{1}{{64}}$
D. L=$\dfrac{1}{{32}}$
Answer
578.7k+ views
Hint: To solve this question, we need to know the basic theory related to the chapter limits. As we know, when we put $x \to 0$, we will get an indeterminate form. Thus, here we will manipulate the given expression in such a way that we will get its approaching value or limit value.
Complete step-by-step answer:
As given in the question,
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
It is to be noted that, on substituting the value $x \to 0$ directly to the function, the numerator as well as denominator will become 0, and we know the value $\dfrac{0}{0}$, does not exist.
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}{{\left( {{\text{1 - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Here, we use the expansion of ${\left( {1 + x} \right)^n}$.
As we know, ${\left( {1 + x} \right)^n}$= $1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + ......$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}{\text{ - 1}}} \right)}}{{\text{2}}}{{\left( {{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\text{2}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\dfrac{{{\text{ - 1}}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{4}}}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{a}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{3}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Limit is finite when
$ \Rightarrow $$\dfrac{1}{{2a}} = \dfrac{1}{4}$
$ \Rightarrow $${\text{a = 2}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{64}}$
$\therefore L$$ = \dfrac{1}{{64}},a = 2$
Therefore, option (A) and (C) are the correct answer.
Note: A function may approach two different limits. One where the variable approaches its limit through values larger than the limit and the other where the variable approaches its limit through values smaller than the limit. In such a case, the limit is not defined but the right and left-hand limit exist.
Complete step-by-step answer:
As given in the question,
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
It is to be noted that, on substituting the value $x \to 0$ directly to the function, the numerator as well as denominator will become 0, and we know the value $\dfrac{0}{0}$, does not exist.
${\lim _{x \to 0}}$$\dfrac{{a - \sqrt {{a^2} - {x^2}} - \dfrac{{{x^2}}}{4}}}{{{x^4}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}{{\left( {{\text{1 - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Here, we use the expansion of ${\left( {1 + x} \right)^n}$.
As we know, ${\left( {1 + x} \right)^n}$= $1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + ......$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ + }}\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\left( {\dfrac{{\text{1}}}{{\text{2}}}{\text{ - 1}}} \right)}}{{\text{2}}}{{\left( {{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}} \right)}^{\text{2}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{{\text{a - a}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\dfrac{{{\text{ - 1}}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{4}}}}}} \right){\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
${\lim _{x \to 0}}$$\dfrac{{\dfrac{{\text{1}}}{{\text{2}}}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{a}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{8}}}\dfrac{{{{\text{x}}^{\text{4}}}}}{{{{\text{a}}^{\text{3}}}}}{\text{ - }}\dfrac{{{{\text{x}}^{\text{2}}}}}{{\text{4}}}}}{{{{\text{x}}^{\text{4}}}}}$
Limit is finite when
$ \Rightarrow $$\dfrac{1}{{2a}} = \dfrac{1}{4}$
$ \Rightarrow $${\text{a = 2}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{8{a^3}}}$
$\therefore L = \dfrac{1}{{64}}$
$\therefore L$$ = \dfrac{1}{{64}},a = 2$
Therefore, option (A) and (C) are the correct answer.
Note: A function may approach two different limits. One where the variable approaches its limit through values larger than the limit and the other where the variable approaches its limit through values smaller than the limit. In such a case, the limit is not defined but the right and left-hand limit exist.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

