
Let $\Gamma $ denote a curve y = f(x) which is in the first quadrant and let the point (1, 0) lie on it. Let the tangent to $\Gamma $ at a point P intersect the y – axis at ${{\text{Y}}_{p}}$. If $\text{P}{{\text{Y}}_{p}}$ has length 1 for each point P on $\Gamma $. Then which of the following options is/are correct?
(This question has multiple correct options)
(a) $y=-\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)+\sqrt{1-{{x}^{2}}}$
(b) $xy'+\sqrt{1-{{x}^{2}}}=0$
(c) $xy'-\sqrt{1-{{x}^{2}}}=0$
(d) $y=\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)+\sqrt{1-{{x}^{2}}}$
Answer
512.1k+ views
Hint: To solve this question, we will take some point P(m, n) such that it lies on the curve y = f(x). Then we will find the equation of the tangent to the curve y = f(x) from point P in slope point form. The slope of this tangent will be equal to first order differential of the curve at point P. We know that this tangent intersects the y – axis at the point ${{\text{Y}}_{p}}$. But substituting x = 0 in the equation of tangent, we can find point ${{\text{Y}}_{p}}$. Now we know that the segment $\text{P}{{\text{Y}}_{p}}$ has a length of 1. Thus, we will use distance formula and equate it to 1. This will give us a differential equation. Once we solve the differential equation, we will find the equation of the curve. Then we will see which of the options satisfy with the equation.
Complete step-by-step answer:
Let the coordinates of the point P on the curve be (m, n), such that f(m) = n.
The equation of the tangent at point P to the curve y = f(x) will in the slope point form will be as follows:
$\Rightarrow y-n=\dfrac{dy}{dx}\left( x-m \right)$
We know that this line intersects the y – axis at point ${{\text{Y}}_{p}}$. To find the coordinates of the point ${{\text{Y}}_{p}}$, we will substitute x = 0.
$\begin{align}
& \Rightarrow y-n=\dfrac{dy}{dx}\left( 0-m \right) \\
& \Rightarrow y=n+m\dfrac{dy}{dx} \\
\end{align}$
Thus, coordinates of point ${{\text{Y}}_{p}}$ be $\left( 0,n+m\dfrac{dy}{dx} \right)$ .
We also know that the distance ($\text{P}{{\text{Y}}_{p}}$) = 1
\[\begin{align}
& \Rightarrow \sqrt{{{\left( n+m\dfrac{dy}{dx}-n \right)}^{2}}+{{\left( 0-m \right)}^{2}}}=1 \\
& \Rightarrow {{\left( m\dfrac{dy}{dx} \right)}^{2}}+{{m}^{2}}=1 \\
& \Rightarrow {{m}^{2}}\left( {{\left( \dfrac{dy}{dx} \right)}^{2}}+1 \right)=1 \\
& \Rightarrow {{\left( \dfrac{dy}{dx} \right)}^{2}}=\dfrac{1-{{m}^{2}}}{{{m}^{2}}} \\
& \Rightarrow \dfrac{dy}{dx}=\pm \dfrac{\sqrt{1-{{m}^{2}}}}{m} \\
\end{align}\]
Now, that the (m, n) lies on the curve y = f(x), we will replace m = x and n = y.
\[\Rightarrow dy=\pm \dfrac{\sqrt{1-{{x}^{2}}}}{x}dx\]
This is a differential equation. To find the curve, we will integrate both sides.
\[\Rightarrow \int{dy}=\pm \int{\dfrac{\sqrt{1-{{x}^{2}}}}{x}dx}\]
To solve the integral on the right-hand side, we will substitute x = $\sin \theta $
$\Rightarrow dx=\cos \theta d\theta $
\[\begin{align}
& \Rightarrow y=\pm \int{\dfrac{\cos \theta }{\sin \theta }\cos \theta d\theta } \\
& \Rightarrow y=\pm \int{\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta }d\theta } \\
& \Rightarrow y=\pm \int{\left( \cos \text{ec}\theta -\sin \theta \right)d\theta } \\
& \Rightarrow y=\pm \left[ -\ln \left( \cos \text{ec}\theta +\cot \theta \right)+\cos \theta \right]+C \\
& \Rightarrow y=\pm \left[ -\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)+\sqrt{1-{{x}^{2}}} \right]+C \\
\end{align}\]
We know that the curve is in the first quadrant, so y must be positive.
\[\begin{align}
& \Rightarrow y=-\left[ -\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)+\sqrt{1-{{x}^{2}}} \right]+C \\
& \Rightarrow y=\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)-\sqrt{1-{{x}^{2}}}+C \\
\end{align}\]
We know that (1, 0) lies on the curve. So, if we substitute x = 1, y = 0
\[\begin{align}
& \Rightarrow \left( 0 \right)=\ln \left( \dfrac{1+\sqrt{1-1}}{1} \right)-\sqrt{1-0}+C \\
& \Rightarrow C=0 \\
\end{align}\]
Therefore, the equation of the curve is \[y=\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)-\sqrt{1-{{x}^{2}}}\] .
In the equation \[\dfrac{dy}{dx}=\pm \dfrac{\sqrt{1-{{m}^{2}}}}{m}\], the correct sign is ( ─ ).
\[\dfrac{dy}{dx}=-\dfrac{\sqrt{1-{{m}^{2}}}}{m}\]
Substitute m = x, as (m, n) is a point on the curve.
\[\begin{align}
& \Rightarrow xy'=-\sqrt{1-{{x}^{2}}} \\
& \Rightarrow xy'+\sqrt{1-{{x}^{2}}}=0 \\
\end{align}\]
Hence, option (b) and option (d) are correct answers.
Note: This is an advanced level question and students are advised to be well versed in differential equations, integration and coordinate geometry to be able to solve this question. Moreover, it is always advisable to draw the figure.
Complete step-by-step answer:

Let the coordinates of the point P on the curve be (m, n), such that f(m) = n.
The equation of the tangent at point P to the curve y = f(x) will in the slope point form will be as follows:
$\Rightarrow y-n=\dfrac{dy}{dx}\left( x-m \right)$
We know that this line intersects the y – axis at point ${{\text{Y}}_{p}}$. To find the coordinates of the point ${{\text{Y}}_{p}}$, we will substitute x = 0.
$\begin{align}
& \Rightarrow y-n=\dfrac{dy}{dx}\left( 0-m \right) \\
& \Rightarrow y=n+m\dfrac{dy}{dx} \\
\end{align}$
Thus, coordinates of point ${{\text{Y}}_{p}}$ be $\left( 0,n+m\dfrac{dy}{dx} \right)$ .
We also know that the distance ($\text{P}{{\text{Y}}_{p}}$) = 1
\[\begin{align}
& \Rightarrow \sqrt{{{\left( n+m\dfrac{dy}{dx}-n \right)}^{2}}+{{\left( 0-m \right)}^{2}}}=1 \\
& \Rightarrow {{\left( m\dfrac{dy}{dx} \right)}^{2}}+{{m}^{2}}=1 \\
& \Rightarrow {{m}^{2}}\left( {{\left( \dfrac{dy}{dx} \right)}^{2}}+1 \right)=1 \\
& \Rightarrow {{\left( \dfrac{dy}{dx} \right)}^{2}}=\dfrac{1-{{m}^{2}}}{{{m}^{2}}} \\
& \Rightarrow \dfrac{dy}{dx}=\pm \dfrac{\sqrt{1-{{m}^{2}}}}{m} \\
\end{align}\]
Now, that the (m, n) lies on the curve y = f(x), we will replace m = x and n = y.
\[\Rightarrow dy=\pm \dfrac{\sqrt{1-{{x}^{2}}}}{x}dx\]
This is a differential equation. To find the curve, we will integrate both sides.
\[\Rightarrow \int{dy}=\pm \int{\dfrac{\sqrt{1-{{x}^{2}}}}{x}dx}\]
To solve the integral on the right-hand side, we will substitute x = $\sin \theta $
$\Rightarrow dx=\cos \theta d\theta $
\[\begin{align}
& \Rightarrow y=\pm \int{\dfrac{\cos \theta }{\sin \theta }\cos \theta d\theta } \\
& \Rightarrow y=\pm \int{\dfrac{1-{{\sin }^{2}}\theta }{\sin \theta }d\theta } \\
& \Rightarrow y=\pm \int{\left( \cos \text{ec}\theta -\sin \theta \right)d\theta } \\
& \Rightarrow y=\pm \left[ -\ln \left( \cos \text{ec}\theta +\cot \theta \right)+\cos \theta \right]+C \\
& \Rightarrow y=\pm \left[ -\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)+\sqrt{1-{{x}^{2}}} \right]+C \\
\end{align}\]
We know that the curve is in the first quadrant, so y must be positive.
\[\begin{align}
& \Rightarrow y=-\left[ -\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)+\sqrt{1-{{x}^{2}}} \right]+C \\
& \Rightarrow y=\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)-\sqrt{1-{{x}^{2}}}+C \\
\end{align}\]
We know that (1, 0) lies on the curve. So, if we substitute x = 1, y = 0
\[\begin{align}
& \Rightarrow \left( 0 \right)=\ln \left( \dfrac{1+\sqrt{1-1}}{1} \right)-\sqrt{1-0}+C \\
& \Rightarrow C=0 \\
\end{align}\]
Therefore, the equation of the curve is \[y=\ln \left( \dfrac{1+\sqrt{1-{{x}^{2}}}}{x} \right)-\sqrt{1-{{x}^{2}}}\] .
In the equation \[\dfrac{dy}{dx}=\pm \dfrac{\sqrt{1-{{m}^{2}}}}{m}\], the correct sign is ( ─ ).
\[\dfrac{dy}{dx}=-\dfrac{\sqrt{1-{{m}^{2}}}}{m}\]
Substitute m = x, as (m, n) is a point on the curve.
\[\begin{align}
& \Rightarrow xy'=-\sqrt{1-{{x}^{2}}} \\
& \Rightarrow xy'+\sqrt{1-{{x}^{2}}}=0 \\
\end{align}\]
Hence, option (b) and option (d) are correct answers.
Note: This is an advanced level question and students are advised to be well versed in differential equations, integration and coordinate geometry to be able to solve this question. Moreover, it is always advisable to draw the figure.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
