
Let $ f(x) = x|x| $ , \[g(x) = \sin x\] and $ h(x) = (gof)(x) $ . Then
A. h(x) is not differentiable at x = 0.
B. h(x) is differentiable at x = 0, but h’(x) is not continuous at x = 0
C. h’(x) is differentiable at x = 0.
D. h’(x) is continuous at x = 0 but it is not differentiable at x = 0
Answer
512.1k+ views
Hint: To solve the above question, first we will derive h(x) from given data. Then we will check continuity of it by checking the limit of the differentiation of it and differentiability by checking differentiation of it. Then again we will check the same for the $h'(x)$.
Complete step-by-step answer:
According to the question,
$ f(x) = x|x| $
That means,
$ f(x) $ is $ - {x^2} $ for x value less than 0.
$ f(x) = - {x^2},x < 0 $
$ f(x) $ is $ {x^2} $ for x value greater and equal to 0.
$ f(x) = {x^2},x \geqslant 0 $
Again it is given in the question that,
\[g(x) = \sin x\]
And, $ h(x) = (gof)(x) $
That means,
$ h(x) = g(f(x)) = \sin ( - {x^2}),x < 0 $ …………..(1)
And, $ h(x) = g(f(x)) = \sin {x^2},x \geqslant 0 $ ……………(2)
For above two functions, if $ x \to 0,h(x) = 0 $
Hence, $ h(0) = 0 $
i.e. \[h\left( x \right)\]is continuous at x = 0……………………….Conclusion (1)
For \[h\left( x \right)\], at x = 0,
Differentiation of equation 1,
$ h'(x) = ( - 2x) \times \cos ( - {x^2}) = 0 $
And differentiation of equation 2,
$ h'(x) = (2x) \times \cos ({x^2}) = 0 $
Hence, \[h\left( x \right)\]is differentiable at x = 0…………………………. Conclusion (2)
And for $ h'(x) $ , limit of the both of the side is equal i.e. 0
Hence, $ h'(x) $ is continuous at x = 0…………………………. Conclusion (3)
We have, $ h'(x) = ( - 2x) \times \cos ( - {x^2}),x < 0 $
And, $ h'(x) = (2x) \times \cos ({x^2}),x \geqslant 0 $
Again taking derivative of above equations and putting x = 0 we get,
$ h''(x) = - 2\cos ( - {x^2}) + 4{x^2}\sin ( - {x^2}) = - 2 $
And $ h''(x) = 2\cos {x^2} - 4{x^2}\sin {x^2} = 2 $
Hence, $ h'(x) $ is not differentiable at x = 0. ……………………………….. Conclusion (4)
From conclusion 1, 2, 3 and 4 we get that, \[h\left( x \right)\] is continuous and differentiable at x = 0, but $ h'(x) $ is continuous but not differentiable at x = 0.
So, the correct answer is “Option D”.
Note: A continuous function is a function that does not have any abrupt changes in value.
A function f is continuous when, for every value of c in its domain, f(c) is defined and the limit of the f is f(c), for $ x \to c $ . I.e. $ \mathop {\lim }\limits_{x \to c} f(x) = f(c) $
In the above question, for the function to be continuous, the limit value of the function must be 0 in both the cases.
A differentiable function of one real variable is a function whose derivative exists at each point in its domain.
A function f is differentiable when the function is continuous and the derivative of the function must be equal in both the cases and c for $ x \to c $ . i.e. $ f'(x) = f(c) $
Complete step-by-step answer:
According to the question,
$ f(x) = x|x| $
That means,
$ f(x) $ is $ - {x^2} $ for x value less than 0.
$ f(x) = - {x^2},x < 0 $
$ f(x) $ is $ {x^2} $ for x value greater and equal to 0.
$ f(x) = {x^2},x \geqslant 0 $
Again it is given in the question that,
\[g(x) = \sin x\]
And, $ h(x) = (gof)(x) $
That means,
$ h(x) = g(f(x)) = \sin ( - {x^2}),x < 0 $ …………..(1)
And, $ h(x) = g(f(x)) = \sin {x^2},x \geqslant 0 $ ……………(2)
For above two functions, if $ x \to 0,h(x) = 0 $
Hence, $ h(0) = 0 $
i.e. \[h\left( x \right)\]is continuous at x = 0……………………….Conclusion (1)
For \[h\left( x \right)\], at x = 0,
Differentiation of equation 1,
$ h'(x) = ( - 2x) \times \cos ( - {x^2}) = 0 $
And differentiation of equation 2,
$ h'(x) = (2x) \times \cos ({x^2}) = 0 $
Hence, \[h\left( x \right)\]is differentiable at x = 0…………………………. Conclusion (2)
And for $ h'(x) $ , limit of the both of the side is equal i.e. 0
Hence, $ h'(x) $ is continuous at x = 0…………………………. Conclusion (3)
We have, $ h'(x) = ( - 2x) \times \cos ( - {x^2}),x < 0 $
And, $ h'(x) = (2x) \times \cos ({x^2}),x \geqslant 0 $
Again taking derivative of above equations and putting x = 0 we get,
$ h''(x) = - 2\cos ( - {x^2}) + 4{x^2}\sin ( - {x^2}) = - 2 $
And $ h''(x) = 2\cos {x^2} - 4{x^2}\sin {x^2} = 2 $
Hence, $ h'(x) $ is not differentiable at x = 0. ……………………………….. Conclusion (4)
From conclusion 1, 2, 3 and 4 we get that, \[h\left( x \right)\] is continuous and differentiable at x = 0, but $ h'(x) $ is continuous but not differentiable at x = 0.
So, the correct answer is “Option D”.
Note: A continuous function is a function that does not have any abrupt changes in value.
A function f is continuous when, for every value of c in its domain, f(c) is defined and the limit of the f is f(c), for $ x \to c $ . I.e. $ \mathop {\lim }\limits_{x \to c} f(x) = f(c) $
In the above question, for the function to be continuous, the limit value of the function must be 0 in both the cases.
A differentiable function of one real variable is a function whose derivative exists at each point in its domain.
A function f is differentiable when the function is continuous and the derivative of the function must be equal in both the cases and c for $ x \to c $ . i.e. $ f'(x) = f(c) $
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
