Answer
Verified
492.3k+ views
Hint: Write the expression of f(x) for x>0 and x<0. Check if f(x) is continuous, if it is continuous check for its differentiability. Then check if f’ and f’’ are continuous.
Complete step-by-step answer:
We know that \[\left| x \right|\] is equal to x for x \[ \geqslant \] 0 and -x for x < 0. Then, we can express f(x) as follows:
\[f(x) = \left\{ \begin{gathered}
(x - x)( - x){\text{ }},x < 0 \\
(x + x)x{\text{ }},x \geqslant 0 \\
\end{gathered} \right.\]
\[f(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
2{x^2}{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(1)\]
We know that constant and polynomial functions are continuous in their domain, so f(x) is continuous for all x > 0 and x < 0. Let us check the continuity of f(x) at x = 0.
The left-hand limit of f(x) at x=0 is as follows:
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} f(x)\]
\[LHL = \mathop {\lim }\limits_{x \to 0} 0\]
\[LHL = 0............(2)\]
Hence, the LHL of f(x) at x = 0 is zero.
Now, the right-hand limit of f(x) at x = 0 is as follows:
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} f(x)\]
\[RHL = \mathop {\lim }\limits_{x \to 0} 2{x^2}\]
\[RHL = 0............(3)\] The value of f(x) at x = 0 is as follows:
\[f(0) = 2{(0)^2}\]
\[f(0) = 0..........(4)\]
From equations (2), (3) and (4), we have:
\[LHL = RHL = f(0)\]
Hence, f(x) is continuous at x = 0.
Therefore, f(x) is continuous everywhere.
We now check the differentiability of f(x) at x=0.
The left-hand derivative of f(x) at x = 0 is as follows:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x - h) - f(x)}}{{ - h}}\]
Here, x = 0, then, we have:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f( - h) - f(0)}}{{ - h}}\]
Using equation (1) in the above equation, we have:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{0 - 2{{(0)}^2}}}{{ - h}}\]
\[LHD = \mathop {\lim }\limits_{h \to 0} 0\]
\[LHD = 0..........(5)\]
The right-hand derivative of f(x) is given as follows:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
Here, x = 0, then, we have:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(h) - f(0)}}{h}\]
Using equation (1), in the above equation, we obtain:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{2{h^2} - 0}}{h}\]
Simplifying further, we get:
\[RHD = \mathop {\lim }\limits_{h \to 0} 2h\]
\[RHD = 0.........(6)\]
From equation (5) and equation (6), we have:
\[LHD = RHD\]
Hence, f(x) is differentiable everywhere.
We find the derivative of f(x) as follows:
\[f'(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
4x{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(7)\]
Again, this is continuous for x > 0 and x < 0.
At x = 0, we have:
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} f'(x)\]
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} 0\]
\[LHL = 0\]
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} f'(x)\]
\[RHL = \mathop {\lim }\limits_{x \to 0} 4x\]
\[RHL = 0\]
\[f'(0) = 0\]
Hence, we have:
\[LHL = RHL = f'(0)\]
Therefore, f’(x) is continuous everywhere.
We now find f’’(x).
\[f'(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
4{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(8)\]
We know clearly that at x = 0,
\[LHL = 0\]
\[RHL = 4\]
\[LHL \ne RHL\]
Hence, f’’(x) is not continuous.
Hence, the correct options are (a), (b) and (c).
Note: To check continuity, finding left-hand limit and right-hand limit and equating them is not sufficient, we need to also check the value of the function at that point. A function is differentiable only if the function is continuous.
Complete step-by-step answer:
We know that \[\left| x \right|\] is equal to x for x \[ \geqslant \] 0 and -x for x < 0. Then, we can express f(x) as follows:
\[f(x) = \left\{ \begin{gathered}
(x - x)( - x){\text{ }},x < 0 \\
(x + x)x{\text{ }},x \geqslant 0 \\
\end{gathered} \right.\]
\[f(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
2{x^2}{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(1)\]
We know that constant and polynomial functions are continuous in their domain, so f(x) is continuous for all x > 0 and x < 0. Let us check the continuity of f(x) at x = 0.
The left-hand limit of f(x) at x=0 is as follows:
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} f(x)\]
\[LHL = \mathop {\lim }\limits_{x \to 0} 0\]
\[LHL = 0............(2)\]
Hence, the LHL of f(x) at x = 0 is zero.
Now, the right-hand limit of f(x) at x = 0 is as follows:
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} f(x)\]
\[RHL = \mathop {\lim }\limits_{x \to 0} 2{x^2}\]
\[RHL = 0............(3)\] The value of f(x) at x = 0 is as follows:
\[f(0) = 2{(0)^2}\]
\[f(0) = 0..........(4)\]
From equations (2), (3) and (4), we have:
\[LHL = RHL = f(0)\]
Hence, f(x) is continuous at x = 0.
Therefore, f(x) is continuous everywhere.
We now check the differentiability of f(x) at x=0.
The left-hand derivative of f(x) at x = 0 is as follows:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x - h) - f(x)}}{{ - h}}\]
Here, x = 0, then, we have:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f( - h) - f(0)}}{{ - h}}\]
Using equation (1) in the above equation, we have:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{0 - 2{{(0)}^2}}}{{ - h}}\]
\[LHD = \mathop {\lim }\limits_{h \to 0} 0\]
\[LHD = 0..........(5)\]
The right-hand derivative of f(x) is given as follows:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
Here, x = 0, then, we have:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(h) - f(0)}}{h}\]
Using equation (1), in the above equation, we obtain:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{2{h^2} - 0}}{h}\]
Simplifying further, we get:
\[RHD = \mathop {\lim }\limits_{h \to 0} 2h\]
\[RHD = 0.........(6)\]
From equation (5) and equation (6), we have:
\[LHD = RHD\]
Hence, f(x) is differentiable everywhere.
We find the derivative of f(x) as follows:
\[f'(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
4x{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(7)\]
Again, this is continuous for x > 0 and x < 0.
At x = 0, we have:
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} f'(x)\]
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} 0\]
\[LHL = 0\]
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} f'(x)\]
\[RHL = \mathop {\lim }\limits_{x \to 0} 4x\]
\[RHL = 0\]
\[f'(0) = 0\]
Hence, we have:
\[LHL = RHL = f'(0)\]
Therefore, f’(x) is continuous everywhere.
We now find f’’(x).
\[f'(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
4{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(8)\]
We know clearly that at x = 0,
\[LHL = 0\]
\[RHL = 4\]
\[LHL \ne RHL\]
Hence, f’’(x) is not continuous.
Hence, the correct options are (a), (b) and (c).
Note: To check continuity, finding left-hand limit and right-hand limit and equating them is not sufficient, we need to also check the value of the function at that point. A function is differentiable only if the function is continuous.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE