
Let \[f(x) = (x + \left| x \right|)\left| x \right|\]. Which of the following is true for all x.
(a) f is continuous
(b) f is differentiable for some x
(c) f’ is continuous
(d) f’’ is continuous
Answer
605.7k+ views
Hint: Write the expression of f(x) for x>0 and x<0. Check if f(x) is continuous, if it is continuous check for its differentiability. Then check if f’ and f’’ are continuous.
Complete step-by-step answer:
We know that \[\left| x \right|\] is equal to x for x \[ \geqslant \] 0 and -x for x < 0. Then, we can express f(x) as follows:
\[f(x) = \left\{ \begin{gathered}
(x - x)( - x){\text{ }},x < 0 \\
(x + x)x{\text{ }},x \geqslant 0 \\
\end{gathered} \right.\]
\[f(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
2{x^2}{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(1)\]
We know that constant and polynomial functions are continuous in their domain, so f(x) is continuous for all x > 0 and x < 0. Let us check the continuity of f(x) at x = 0.
The left-hand limit of f(x) at x=0 is as follows:
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} f(x)\]
\[LHL = \mathop {\lim }\limits_{x \to 0} 0\]
\[LHL = 0............(2)\]
Hence, the LHL of f(x) at x = 0 is zero.
Now, the right-hand limit of f(x) at x = 0 is as follows:
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} f(x)\]
\[RHL = \mathop {\lim }\limits_{x \to 0} 2{x^2}\]
\[RHL = 0............(3)\] The value of f(x) at x = 0 is as follows:
\[f(0) = 2{(0)^2}\]
\[f(0) = 0..........(4)\]
From equations (2), (3) and (4), we have:
\[LHL = RHL = f(0)\]
Hence, f(x) is continuous at x = 0.
Therefore, f(x) is continuous everywhere.
We now check the differentiability of f(x) at x=0.
The left-hand derivative of f(x) at x = 0 is as follows:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x - h) - f(x)}}{{ - h}}\]
Here, x = 0, then, we have:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f( - h) - f(0)}}{{ - h}}\]
Using equation (1) in the above equation, we have:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{0 - 2{{(0)}^2}}}{{ - h}}\]
\[LHD = \mathop {\lim }\limits_{h \to 0} 0\]
\[LHD = 0..........(5)\]
The right-hand derivative of f(x) is given as follows:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
Here, x = 0, then, we have:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(h) - f(0)}}{h}\]
Using equation (1), in the above equation, we obtain:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{2{h^2} - 0}}{h}\]
Simplifying further, we get:
\[RHD = \mathop {\lim }\limits_{h \to 0} 2h\]
\[RHD = 0.........(6)\]
From equation (5) and equation (6), we have:
\[LHD = RHD\]
Hence, f(x) is differentiable everywhere.
We find the derivative of f(x) as follows:
\[f'(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
4x{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(7)\]
Again, this is continuous for x > 0 and x < 0.
At x = 0, we have:
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} f'(x)\]
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} 0\]
\[LHL = 0\]
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} f'(x)\]
\[RHL = \mathop {\lim }\limits_{x \to 0} 4x\]
\[RHL = 0\]
\[f'(0) = 0\]
Hence, we have:
\[LHL = RHL = f'(0)\]
Therefore, f’(x) is continuous everywhere.
We now find f’’(x).
\[f'(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
4{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(8)\]
We know clearly that at x = 0,
\[LHL = 0\]
\[RHL = 4\]
\[LHL \ne RHL\]
Hence, f’’(x) is not continuous.
Hence, the correct options are (a), (b) and (c).
Note: To check continuity, finding left-hand limit and right-hand limit and equating them is not sufficient, we need to also check the value of the function at that point. A function is differentiable only if the function is continuous.
Complete step-by-step answer:
We know that \[\left| x \right|\] is equal to x for x \[ \geqslant \] 0 and -x for x < 0. Then, we can express f(x) as follows:
\[f(x) = \left\{ \begin{gathered}
(x - x)( - x){\text{ }},x < 0 \\
(x + x)x{\text{ }},x \geqslant 0 \\
\end{gathered} \right.\]
\[f(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
2{x^2}{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(1)\]
We know that constant and polynomial functions are continuous in their domain, so f(x) is continuous for all x > 0 and x < 0. Let us check the continuity of f(x) at x = 0.
The left-hand limit of f(x) at x=0 is as follows:
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} f(x)\]
\[LHL = \mathop {\lim }\limits_{x \to 0} 0\]
\[LHL = 0............(2)\]
Hence, the LHL of f(x) at x = 0 is zero.
Now, the right-hand limit of f(x) at x = 0 is as follows:
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} f(x)\]
\[RHL = \mathop {\lim }\limits_{x \to 0} 2{x^2}\]
\[RHL = 0............(3)\] The value of f(x) at x = 0 is as follows:
\[f(0) = 2{(0)^2}\]
\[f(0) = 0..........(4)\]
From equations (2), (3) and (4), we have:
\[LHL = RHL = f(0)\]
Hence, f(x) is continuous at x = 0.
Therefore, f(x) is continuous everywhere.
We now check the differentiability of f(x) at x=0.
The left-hand derivative of f(x) at x = 0 is as follows:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x - h) - f(x)}}{{ - h}}\]
Here, x = 0, then, we have:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f( - h) - f(0)}}{{ - h}}\]
Using equation (1) in the above equation, we have:
\[LHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{0 - 2{{(0)}^2}}}{{ - h}}\]
\[LHD = \mathop {\lim }\limits_{h \to 0} 0\]
\[LHD = 0..........(5)\]
The right-hand derivative of f(x) is given as follows:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
Here, x = 0, then, we have:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(h) - f(0)}}{h}\]
Using equation (1), in the above equation, we obtain:
\[RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{2{h^2} - 0}}{h}\]
Simplifying further, we get:
\[RHD = \mathop {\lim }\limits_{h \to 0} 2h\]
\[RHD = 0.........(6)\]
From equation (5) and equation (6), we have:
\[LHD = RHD\]
Hence, f(x) is differentiable everywhere.
We find the derivative of f(x) as follows:
\[f'(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
4x{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(7)\]
Again, this is continuous for x > 0 and x < 0.
At x = 0, we have:
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} f'(x)\]
\[LHL = \mathop {\lim }\limits_{x \to {0^ - }} 0\]
\[LHL = 0\]
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} f'(x)\]
\[RHL = \mathop {\lim }\limits_{x \to 0} 4x\]
\[RHL = 0\]
\[f'(0) = 0\]
Hence, we have:
\[LHL = RHL = f'(0)\]
Therefore, f’(x) is continuous everywhere.
We now find f’’(x).
\[f'(x) = \left\{ \begin{gathered}
0{\text{ }},x < 0 \\
4{\text{ }},x \geqslant 0 \\
\end{gathered} \right.............(8)\]
We know clearly that at x = 0,
\[LHL = 0\]
\[RHL = 4\]
\[LHL \ne RHL\]
Hence, f’’(x) is not continuous.
Hence, the correct options are (a), (b) and (c).
Note: To check continuity, finding left-hand limit and right-hand limit and equating them is not sufficient, we need to also check the value of the function at that point. A function is differentiable only if the function is continuous.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

