
Let $f:R \to R,g:R \to R{\text{ and }}h:R \to R$ be a differential function such that $f\left( x \right) = {x^3} + 3x + 2,g\left( {f\left( x \right)} \right) = x{\text{ and }}h\left( {g\left( {g\left( x \right)} \right)} \right) = x{\text{ for all }}x \in R$ . Then which of the following options is correct:
(A) $g{'}\left( 2 \right) = \dfrac{1}{{15}}$
(B) $h{'}\left( 1 \right) = 666$
(C) $h\left( 0 \right) = 16$
(D) $h\left( {g\left( 3 \right)} \right) = 36$
Answer
574.2k+ views
Hint: Use the given information to evaluate the options $g{'}\left( 2 \right)$ , $h{'}\left( 1 \right)$ , $h\left( 0 \right)$ and $h\left( {g\left( 3 \right)} \right)$. For option (A), differentiate $g\left( {f\left( x \right)} \right) = x$ using the chain rule and then find for what value of $x$ does $f\left( x \right) = 2$. For $h{'}\left( 1 \right)$, differentiate $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ using the chain rule and substitute the value of each term separately. Compare all the values using options to determine the correct answer.
Complete step by step answer:
We were given with the function $f$ , defined as $f\left( x \right) = {x^3} + 3x + 2$ , and function $g$ where $g\left( {f\left( x \right)} \right) = x$ and another function $h$ which has property $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ . With this given information we need to check which of the given options is correct.
Let’s first consider option (A).
Differentiating relation $g\left( {f\left( x \right)} \right) = x$ with respect to $x$ using the chain rule, i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f{'}\left( {g\left( x \right)} \right)g{'}\left( x \right)$ , we get: $g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = \dfrac{{d\left( x \right)}}{{dx}} = 1$
Therefore, we get the equation $g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1$ ……………. (1)
And $f{'}\left( x \right)$ will be the first derivative of $f\left( x \right)$ , i.e. $f{'}\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{x^3} + 3x + 2} \right) = 3{x^2} + 3$
For $x = 0$ , $f\left( 0 \right) = {0^3} + 3 \times 0 + 2 = 2$
Now, let’s put $x = 0$in relation (1), this will give:
$ \Rightarrow g{'}\left( {f\left( 0 \right)} \right) \times f{'}\left( 0 \right) = 1$
Putting the value of $f{'}\left( x \right)$ and $f\left( 0 \right)$ , we get
$ \Rightarrow g{'}\left( 2 \right) \times \left( {3 \times 0 + 3} \right) = 1 \Rightarrow g{'}\left( 2 \right) = \dfrac{1}{3}$
Let's put $x = 3$ in $f\left( x \right)$, we get: $f\left( 3 \right) = {3^3} + 3 \times 3 + 2 = 38$
So, we use this in $g\left( {f\left( x \right)} \right) = x$as follows:
$ \Rightarrow g\left( {f\left( 3 \right)} \right) = 3 \Rightarrow g\left( {38} \right) = 3$
Now, we can use $x = 38$ in $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ and we will get:
$ \Rightarrow h\left( {g\left( {g\left( {38} \right)} \right)} \right) = 38 \Rightarrow h\left( {g\left( 3 \right)} \right) = 38$
For $x = 2$ in $f\left( x \right) = {x^3} + 3x + 2$, we get: $f\left( 2 \right) = {2^3} + 3 \times 2 + 2 = 8 + 6 + 2 = 16$
Now for $x = 2$ in $g\left( {f\left( x \right)} \right) = x$ , we get:
$ \Rightarrow g\left( {f\left( 2 \right)} \right) = 2 \Rightarrow g\left( {16} \right) = 2$
Similarly, for $x = 0$ in $g\left( {f\left( x \right)} \right) = x$ , we get:
$ \Rightarrow g\left( {f\left( 0 \right)} \right) = 0 \Rightarrow g\left( 2 \right) = 0$
So, let's use $x = 16$ in the given expression $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ and using the above-found values in it, this will result in:
$ \Rightarrow h\left( {g\left( {g\left( {16} \right)} \right)} \right) = 16 \Rightarrow h\left( {g\left( 2 \right)} \right) = 16 \Rightarrow h\left( 0 \right) = 16$
Now, let's differentiate the equation $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$using the chain rule
$\dfrac{d}{{dx}}\left( {h\left( {g\left( {g\left( x \right)} \right)} \right)} \right) = \dfrac{d}{{dx}}\left( x \right) \Rightarrow h{'}\left( {g\left( {g\left( x \right)} \right)} \right) \times g{'}\left( {g\left( x \right)} \right) \times g{'}\left( x \right) = 1$ ………. (2)
We need the value of $h{'}\left( 1 \right)$ , so for that, we need to make $h{'}\left( {g\left( {g\left( x \right)} \right)} \right) = h{'}\left( 1 \right)$ , i.e. $g\left( {g\left( x \right)} \right) = 1$
For $x = 1$ in $g\left( {f\left( x \right)} \right) = x$, we get: $g\left( {f\left( 1 \right)} \right) = 1 \Rightarrow g\left( {{1^3} + 3 \times 1 + 2} \right) = 1 \Rightarrow g\left( 6 \right) = 1$
Now for $x = 6$ in $g\left( {f\left( x \right)} \right) = x$, we get: \[g\left( {f\left( 6 \right)} \right) = 6 \Rightarrow g\left( {{6^3} + 3 \times 6 + 2} \right) = 6 \Rightarrow g\left( {216 + 18 + 2} \right) = 6 \Rightarrow g\left( {236} \right) = 6\]
So, for $x = 236$ the relation (2) will become:
$ \Rightarrow h{'}\left( {g\left( {g\left( {236} \right)} \right)} \right) \times g{'}\left( {g\left( {236} \right)} \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( {g\left( 6 \right)} \right) \times g{'}\left( 6 \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}$Therefore, we get: $h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}$ ………. (3)
From relation (1), we can put $x = 6{\text{ and }}x = 236$
$ \Rightarrow g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1 \Rightarrow g{'}\left( {f\left( x \right)} \right) = \dfrac{1}{{f{'}\left( x \right)}}$
For $x = 1$ , we get: $g{'}\left( {f\left( 1 \right)} \right) = \dfrac{1}{{f{'}\left( 1 \right)}} \Rightarrow g{'}\left( {1 + 3 + 2} \right) = \dfrac{1}{{\left( {3 \times 1 + 3} \right)}} \Rightarrow g{'}\left( 6 \right) = \dfrac{1}{6}$
For $x = 6$ , we get: $g{'}\left( {f\left( 6 \right)} \right) = \dfrac{1}{{f{'}\left( 6 \right)}} \Rightarrow g{'}\left( {236} \right) = \dfrac{1}{{3 \times {6^2} + 3}} = \dfrac{1}{{108 + 3}} = \dfrac{1}{{111}}$
Now, let's substitute these values in the relation (3)
$ \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}} = \dfrac{1}{{\dfrac{1}{6} \times \dfrac{1}{{111}}}} = \dfrac{1}{{\dfrac{1}{{666}}}} = 666$
Hence, we get the results: $g{'}\left( 2 \right) = \dfrac{1}{3}$ , $h{'}\left( 1 \right) = 666$ , $h\left( 0 \right) = 16$ and $h\left( {g\left( 3 \right)} \right) = 38$
Therefore, only the option (B) and (C) are correct.
Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{'}s no choice other than checking for each option one by one.
Complete step by step answer:
We were given with the function $f$ , defined as $f\left( x \right) = {x^3} + 3x + 2$ , and function $g$ where $g\left( {f\left( x \right)} \right) = x$ and another function $h$ which has property $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ . With this given information we need to check which of the given options is correct.
Let’s first consider option (A).
Differentiating relation $g\left( {f\left( x \right)} \right) = x$ with respect to $x$ using the chain rule, i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f{'}\left( {g\left( x \right)} \right)g{'}\left( x \right)$ , we get: $g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = \dfrac{{d\left( x \right)}}{{dx}} = 1$
Therefore, we get the equation $g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1$ ……………. (1)
And $f{'}\left( x \right)$ will be the first derivative of $f\left( x \right)$ , i.e. $f{'}\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{x^3} + 3x + 2} \right) = 3{x^2} + 3$
For $x = 0$ , $f\left( 0 \right) = {0^3} + 3 \times 0 + 2 = 2$
Now, let’s put $x = 0$in relation (1), this will give:
$ \Rightarrow g{'}\left( {f\left( 0 \right)} \right) \times f{'}\left( 0 \right) = 1$
Putting the value of $f{'}\left( x \right)$ and $f\left( 0 \right)$ , we get
$ \Rightarrow g{'}\left( 2 \right) \times \left( {3 \times 0 + 3} \right) = 1 \Rightarrow g{'}\left( 2 \right) = \dfrac{1}{3}$
Let's put $x = 3$ in $f\left( x \right)$, we get: $f\left( 3 \right) = {3^3} + 3 \times 3 + 2 = 38$
So, we use this in $g\left( {f\left( x \right)} \right) = x$as follows:
$ \Rightarrow g\left( {f\left( 3 \right)} \right) = 3 \Rightarrow g\left( {38} \right) = 3$
Now, we can use $x = 38$ in $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ and we will get:
$ \Rightarrow h\left( {g\left( {g\left( {38} \right)} \right)} \right) = 38 \Rightarrow h\left( {g\left( 3 \right)} \right) = 38$
For $x = 2$ in $f\left( x \right) = {x^3} + 3x + 2$, we get: $f\left( 2 \right) = {2^3} + 3 \times 2 + 2 = 8 + 6 + 2 = 16$
Now for $x = 2$ in $g\left( {f\left( x \right)} \right) = x$ , we get:
$ \Rightarrow g\left( {f\left( 2 \right)} \right) = 2 \Rightarrow g\left( {16} \right) = 2$
Similarly, for $x = 0$ in $g\left( {f\left( x \right)} \right) = x$ , we get:
$ \Rightarrow g\left( {f\left( 0 \right)} \right) = 0 \Rightarrow g\left( 2 \right) = 0$
So, let's use $x = 16$ in the given expression $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ and using the above-found values in it, this will result in:
$ \Rightarrow h\left( {g\left( {g\left( {16} \right)} \right)} \right) = 16 \Rightarrow h\left( {g\left( 2 \right)} \right) = 16 \Rightarrow h\left( 0 \right) = 16$
Now, let's differentiate the equation $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$using the chain rule
$\dfrac{d}{{dx}}\left( {h\left( {g\left( {g\left( x \right)} \right)} \right)} \right) = \dfrac{d}{{dx}}\left( x \right) \Rightarrow h{'}\left( {g\left( {g\left( x \right)} \right)} \right) \times g{'}\left( {g\left( x \right)} \right) \times g{'}\left( x \right) = 1$ ………. (2)
We need the value of $h{'}\left( 1 \right)$ , so for that, we need to make $h{'}\left( {g\left( {g\left( x \right)} \right)} \right) = h{'}\left( 1 \right)$ , i.e. $g\left( {g\left( x \right)} \right) = 1$
For $x = 1$ in $g\left( {f\left( x \right)} \right) = x$, we get: $g\left( {f\left( 1 \right)} \right) = 1 \Rightarrow g\left( {{1^3} + 3 \times 1 + 2} \right) = 1 \Rightarrow g\left( 6 \right) = 1$
Now for $x = 6$ in $g\left( {f\left( x \right)} \right) = x$, we get: \[g\left( {f\left( 6 \right)} \right) = 6 \Rightarrow g\left( {{6^3} + 3 \times 6 + 2} \right) = 6 \Rightarrow g\left( {216 + 18 + 2} \right) = 6 \Rightarrow g\left( {236} \right) = 6\]
So, for $x = 236$ the relation (2) will become:
$ \Rightarrow h{'}\left( {g\left( {g\left( {236} \right)} \right)} \right) \times g{'}\left( {g\left( {236} \right)} \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( {g\left( 6 \right)} \right) \times g{'}\left( 6 \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}$Therefore, we get: $h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}$ ………. (3)
From relation (1), we can put $x = 6{\text{ and }}x = 236$
$ \Rightarrow g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1 \Rightarrow g{'}\left( {f\left( x \right)} \right) = \dfrac{1}{{f{'}\left( x \right)}}$
For $x = 1$ , we get: $g{'}\left( {f\left( 1 \right)} \right) = \dfrac{1}{{f{'}\left( 1 \right)}} \Rightarrow g{'}\left( {1 + 3 + 2} \right) = \dfrac{1}{{\left( {3 \times 1 + 3} \right)}} \Rightarrow g{'}\left( 6 \right) = \dfrac{1}{6}$
For $x = 6$ , we get: $g{'}\left( {f\left( 6 \right)} \right) = \dfrac{1}{{f{'}\left( 6 \right)}} \Rightarrow g{'}\left( {236} \right) = \dfrac{1}{{3 \times {6^2} + 3}} = \dfrac{1}{{108 + 3}} = \dfrac{1}{{111}}$
Now, let's substitute these values in the relation (3)
$ \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}} = \dfrac{1}{{\dfrac{1}{6} \times \dfrac{1}{{111}}}} = \dfrac{1}{{\dfrac{1}{{666}}}} = 666$
Hence, we get the results: $g{'}\left( 2 \right) = \dfrac{1}{3}$ , $h{'}\left( 1 \right) = 666$ , $h\left( 0 \right) = 16$ and $h\left( {g\left( 3 \right)} \right) = 38$
Therefore, only the option (B) and (C) are correct.
Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{'}s no choice other than checking for each option one by one.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

