
Let $f:R \to R,g:R \to R{\text{ and }}h:R \to R$ be a differential function such that $f\left( x \right) = {x^3} + 3x + 2,g\left( {f\left( x \right)} \right) = x{\text{ and }}h\left( {g\left( {g\left( x \right)} \right)} \right) = x{\text{ for all }}x \in R$ . Then which of the following options is correct:
(A) $g{'}\left( 2 \right) = \dfrac{1}{{15}}$
(B) $h{'}\left( 1 \right) = 666$
(C) $h\left( 0 \right) = 16$
(D) $h\left( {g\left( 3 \right)} \right) = 36$
Answer
510.6k+ views
Hint: Use the given information to evaluate the options $g{'}\left( 2 \right)$ , $h{'}\left( 1 \right)$ , $h\left( 0 \right)$ and $h\left( {g\left( 3 \right)} \right)$. For option (A), differentiate $g\left( {f\left( x \right)} \right) = x$ using the chain rule and then find for what value of $x$ does $f\left( x \right) = 2$. For $h{'}\left( 1 \right)$, differentiate $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ using the chain rule and substitute the value of each term separately. Compare all the values using options to determine the correct answer.
Complete step by step answer:
We were given with the function $f$ , defined as $f\left( x \right) = {x^3} + 3x + 2$ , and function $g$ where $g\left( {f\left( x \right)} \right) = x$ and another function $h$ which has property $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ . With this given information we need to check which of the given options is correct.
Let’s first consider option (A).
Differentiating relation $g\left( {f\left( x \right)} \right) = x$ with respect to $x$ using the chain rule, i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f{'}\left( {g\left( x \right)} \right)g{'}\left( x \right)$ , we get: $g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = \dfrac{{d\left( x \right)}}{{dx}} = 1$
Therefore, we get the equation $g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1$ ……………. (1)
And $f{'}\left( x \right)$ will be the first derivative of $f\left( x \right)$ , i.e. $f{'}\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{x^3} + 3x + 2} \right) = 3{x^2} + 3$
For $x = 0$ , $f\left( 0 \right) = {0^3} + 3 \times 0 + 2 = 2$
Now, let’s put $x = 0$in relation (1), this will give:
$ \Rightarrow g{'}\left( {f\left( 0 \right)} \right) \times f{'}\left( 0 \right) = 1$
Putting the value of $f{'}\left( x \right)$ and $f\left( 0 \right)$ , we get
$ \Rightarrow g{'}\left( 2 \right) \times \left( {3 \times 0 + 3} \right) = 1 \Rightarrow g{'}\left( 2 \right) = \dfrac{1}{3}$
Let's put $x = 3$ in $f\left( x \right)$, we get: $f\left( 3 \right) = {3^3} + 3 \times 3 + 2 = 38$
So, we use this in $g\left( {f\left( x \right)} \right) = x$as follows:
$ \Rightarrow g\left( {f\left( 3 \right)} \right) = 3 \Rightarrow g\left( {38} \right) = 3$
Now, we can use $x = 38$ in $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ and we will get:
$ \Rightarrow h\left( {g\left( {g\left( {38} \right)} \right)} \right) = 38 \Rightarrow h\left( {g\left( 3 \right)} \right) = 38$
For $x = 2$ in $f\left( x \right) = {x^3} + 3x + 2$, we get: $f\left( 2 \right) = {2^3} + 3 \times 2 + 2 = 8 + 6 + 2 = 16$
Now for $x = 2$ in $g\left( {f\left( x \right)} \right) = x$ , we get:
$ \Rightarrow g\left( {f\left( 2 \right)} \right) = 2 \Rightarrow g\left( {16} \right) = 2$
Similarly, for $x = 0$ in $g\left( {f\left( x \right)} \right) = x$ , we get:
$ \Rightarrow g\left( {f\left( 0 \right)} \right) = 0 \Rightarrow g\left( 2 \right) = 0$
So, let's use $x = 16$ in the given expression $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ and using the above-found values in it, this will result in:
$ \Rightarrow h\left( {g\left( {g\left( {16} \right)} \right)} \right) = 16 \Rightarrow h\left( {g\left( 2 \right)} \right) = 16 \Rightarrow h\left( 0 \right) = 16$
Now, let's differentiate the equation $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$using the chain rule
$\dfrac{d}{{dx}}\left( {h\left( {g\left( {g\left( x \right)} \right)} \right)} \right) = \dfrac{d}{{dx}}\left( x \right) \Rightarrow h{'}\left( {g\left( {g\left( x \right)} \right)} \right) \times g{'}\left( {g\left( x \right)} \right) \times g{'}\left( x \right) = 1$ ………. (2)
We need the value of $h{'}\left( 1 \right)$ , so for that, we need to make $h{'}\left( {g\left( {g\left( x \right)} \right)} \right) = h{'}\left( 1 \right)$ , i.e. $g\left( {g\left( x \right)} \right) = 1$
For $x = 1$ in $g\left( {f\left( x \right)} \right) = x$, we get: $g\left( {f\left( 1 \right)} \right) = 1 \Rightarrow g\left( {{1^3} + 3 \times 1 + 2} \right) = 1 \Rightarrow g\left( 6 \right) = 1$
Now for $x = 6$ in $g\left( {f\left( x \right)} \right) = x$, we get: \[g\left( {f\left( 6 \right)} \right) = 6 \Rightarrow g\left( {{6^3} + 3 \times 6 + 2} \right) = 6 \Rightarrow g\left( {216 + 18 + 2} \right) = 6 \Rightarrow g\left( {236} \right) = 6\]
So, for $x = 236$ the relation (2) will become:
$ \Rightarrow h{'}\left( {g\left( {g\left( {236} \right)} \right)} \right) \times g{'}\left( {g\left( {236} \right)} \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( {g\left( 6 \right)} \right) \times g{'}\left( 6 \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}$Therefore, we get: $h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}$ ………. (3)
From relation (1), we can put $x = 6{\text{ and }}x = 236$
$ \Rightarrow g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1 \Rightarrow g{'}\left( {f\left( x \right)} \right) = \dfrac{1}{{f{'}\left( x \right)}}$
For $x = 1$ , we get: $g{'}\left( {f\left( 1 \right)} \right) = \dfrac{1}{{f{'}\left( 1 \right)}} \Rightarrow g{'}\left( {1 + 3 + 2} \right) = \dfrac{1}{{\left( {3 \times 1 + 3} \right)}} \Rightarrow g{'}\left( 6 \right) = \dfrac{1}{6}$
For $x = 6$ , we get: $g{'}\left( {f\left( 6 \right)} \right) = \dfrac{1}{{f{'}\left( 6 \right)}} \Rightarrow g{'}\left( {236} \right) = \dfrac{1}{{3 \times {6^2} + 3}} = \dfrac{1}{{108 + 3}} = \dfrac{1}{{111}}$
Now, let's substitute these values in the relation (3)
$ \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}} = \dfrac{1}{{\dfrac{1}{6} \times \dfrac{1}{{111}}}} = \dfrac{1}{{\dfrac{1}{{666}}}} = 666$
Hence, we get the results: $g{'}\left( 2 \right) = \dfrac{1}{3}$ , $h{'}\left( 1 \right) = 666$ , $h\left( 0 \right) = 16$ and $h\left( {g\left( 3 \right)} \right) = 38$
Therefore, only the option (B) and (C) are correct.
Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{'}s no choice other than checking for each option one by one.
Complete step by step answer:
We were given with the function $f$ , defined as $f\left( x \right) = {x^3} + 3x + 2$ , and function $g$ where $g\left( {f\left( x \right)} \right) = x$ and another function $h$ which has property $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ . With this given information we need to check which of the given options is correct.
Let’s first consider option (A).
Differentiating relation $g\left( {f\left( x \right)} \right) = x$ with respect to $x$ using the chain rule, i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f{'}\left( {g\left( x \right)} \right)g{'}\left( x \right)$ , we get: $g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = \dfrac{{d\left( x \right)}}{{dx}} = 1$
Therefore, we get the equation $g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1$ ……………. (1)
And $f{'}\left( x \right)$ will be the first derivative of $f\left( x \right)$ , i.e. $f{'}\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {{x^3} + 3x + 2} \right) = 3{x^2} + 3$
For $x = 0$ , $f\left( 0 \right) = {0^3} + 3 \times 0 + 2 = 2$
Now, let’s put $x = 0$in relation (1), this will give:
$ \Rightarrow g{'}\left( {f\left( 0 \right)} \right) \times f{'}\left( 0 \right) = 1$
Putting the value of $f{'}\left( x \right)$ and $f\left( 0 \right)$ , we get
$ \Rightarrow g{'}\left( 2 \right) \times \left( {3 \times 0 + 3} \right) = 1 \Rightarrow g{'}\left( 2 \right) = \dfrac{1}{3}$
Let's put $x = 3$ in $f\left( x \right)$, we get: $f\left( 3 \right) = {3^3} + 3 \times 3 + 2 = 38$
So, we use this in $g\left( {f\left( x \right)} \right) = x$as follows:
$ \Rightarrow g\left( {f\left( 3 \right)} \right) = 3 \Rightarrow g\left( {38} \right) = 3$
Now, we can use $x = 38$ in $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ and we will get:
$ \Rightarrow h\left( {g\left( {g\left( {38} \right)} \right)} \right) = 38 \Rightarrow h\left( {g\left( 3 \right)} \right) = 38$
For $x = 2$ in $f\left( x \right) = {x^3} + 3x + 2$, we get: $f\left( 2 \right) = {2^3} + 3 \times 2 + 2 = 8 + 6 + 2 = 16$
Now for $x = 2$ in $g\left( {f\left( x \right)} \right) = x$ , we get:
$ \Rightarrow g\left( {f\left( 2 \right)} \right) = 2 \Rightarrow g\left( {16} \right) = 2$
Similarly, for $x = 0$ in $g\left( {f\left( x \right)} \right) = x$ , we get:
$ \Rightarrow g\left( {f\left( 0 \right)} \right) = 0 \Rightarrow g\left( 2 \right) = 0$
So, let's use $x = 16$ in the given expression $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$ and using the above-found values in it, this will result in:
$ \Rightarrow h\left( {g\left( {g\left( {16} \right)} \right)} \right) = 16 \Rightarrow h\left( {g\left( 2 \right)} \right) = 16 \Rightarrow h\left( 0 \right) = 16$
Now, let's differentiate the equation $h\left( {g\left( {g\left( x \right)} \right)} \right) = x$using the chain rule
$\dfrac{d}{{dx}}\left( {h\left( {g\left( {g\left( x \right)} \right)} \right)} \right) = \dfrac{d}{{dx}}\left( x \right) \Rightarrow h{'}\left( {g\left( {g\left( x \right)} \right)} \right) \times g{'}\left( {g\left( x \right)} \right) \times g{'}\left( x \right) = 1$ ………. (2)
We need the value of $h{'}\left( 1 \right)$ , so for that, we need to make $h{'}\left( {g\left( {g\left( x \right)} \right)} \right) = h{'}\left( 1 \right)$ , i.e. $g\left( {g\left( x \right)} \right) = 1$
For $x = 1$ in $g\left( {f\left( x \right)} \right) = x$, we get: $g\left( {f\left( 1 \right)} \right) = 1 \Rightarrow g\left( {{1^3} + 3 \times 1 + 2} \right) = 1 \Rightarrow g\left( 6 \right) = 1$
Now for $x = 6$ in $g\left( {f\left( x \right)} \right) = x$, we get: \[g\left( {f\left( 6 \right)} \right) = 6 \Rightarrow g\left( {{6^3} + 3 \times 6 + 2} \right) = 6 \Rightarrow g\left( {216 + 18 + 2} \right) = 6 \Rightarrow g\left( {236} \right) = 6\]
So, for $x = 236$ the relation (2) will become:
$ \Rightarrow h{'}\left( {g\left( {g\left( {236} \right)} \right)} \right) \times g{'}\left( {g\left( {236} \right)} \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( {g\left( 6 \right)} \right) \times g{'}\left( 6 \right) \times g{'}\left( {236} \right) = 1 \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}$Therefore, we get: $h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}}$ ………. (3)
From relation (1), we can put $x = 6{\text{ and }}x = 236$
$ \Rightarrow g{'}\left( {f\left( x \right)} \right) \times f{'}\left( x \right) = 1 \Rightarrow g{'}\left( {f\left( x \right)} \right) = \dfrac{1}{{f{'}\left( x \right)}}$
For $x = 1$ , we get: $g{'}\left( {f\left( 1 \right)} \right) = \dfrac{1}{{f{'}\left( 1 \right)}} \Rightarrow g{'}\left( {1 + 3 + 2} \right) = \dfrac{1}{{\left( {3 \times 1 + 3} \right)}} \Rightarrow g{'}\left( 6 \right) = \dfrac{1}{6}$
For $x = 6$ , we get: $g{'}\left( {f\left( 6 \right)} \right) = \dfrac{1}{{f{'}\left( 6 \right)}} \Rightarrow g{'}\left( {236} \right) = \dfrac{1}{{3 \times {6^2} + 3}} = \dfrac{1}{{108 + 3}} = \dfrac{1}{{111}}$
Now, let's substitute these values in the relation (3)
$ \Rightarrow h{'}\left( 1 \right) = \dfrac{1}{{g{'}\left( 6 \right) \times g{'}\left( {236} \right)}} = \dfrac{1}{{\dfrac{1}{6} \times \dfrac{1}{{111}}}} = \dfrac{1}{{\dfrac{1}{{666}}}} = 666$
Hence, we get the results: $g{'}\left( 2 \right) = \dfrac{1}{3}$ , $h{'}\left( 1 \right) = 666$ , $h\left( 0 \right) = 16$ and $h\left( {g\left( 3 \right)} \right) = 38$
Therefore, only the option (B) and (C) are correct.
Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{'}s no choice other than checking for each option one by one.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
