Answer
Verified
389.7k+ views
Hint: Here we are given a function which is in greatest integer form. We have to find the summation of that function up to \[151\]. To do this first we find the value which is inside the \[\left[ . \right]\] box. Then according to that value we find till which summation that value holds. After value changes repeat that same until we reach up to \[151\]. Then we add up all the values to get the value of the summation.
Complete step-by-step solution:
We know that till the value inside the box reaches \[1\] the value of the function will be zero. That means,
\[
\dfrac{1}{2} + \dfrac{n}{{100}} = 1 \\
\Rightarrow \dfrac{n}{{100}} = 1 - \dfrac{1}{2} \\
\Rightarrow \dfrac{n}{{100}} = \dfrac{1}{2} \\
\Rightarrow n = 50 \]
Till \[n = 49\], value of function is zero.
Now for the value of the function to be \[2\], we get
\[
\dfrac{1}{2} + \dfrac{n}{{100}} = 2 \\
\Rightarrow \dfrac{n}{{100}} = 2 - \dfrac{1}{2} \\
\Rightarrow \dfrac{n}{{100}} = \dfrac{3}{2} \\
\Rightarrow n = 150 \]
Which means till \[n = 149\], the value of the function will be \[1\].
So the value of the function will be \[2\] for \[n = 150,151\].
Hence during the course of summation till \[n = 151\], we get
\[f(n) = 0\] for \[49\] values
\[f(n) = 1\] for \[100\] values
\[f(n) = 2\] for \[2\] values
So, we get the summation as
\[\sum\limits_{n = 1}^{151} {f(n)} = 0 \times 49 + 1 \times 100 + 2 \times 2 \\
\Rightarrow \sum\limits_{n = 1}^{151} {f(n)} = 100 + 4 \\
\Rightarrow \sum\limits_{n = 1}^{151} {f(n)} = 104 \]
Hence we get the answer as option C).
Note: We should take a note that whenever there is any function which is a greatest integer function, its value will always be the integer part of any number and the function will be constant till the very point where the value of the function changes to another integer. Means such a function will never give out a value with a fractional part.
Complete step-by-step solution:
We know that till the value inside the box reaches \[1\] the value of the function will be zero. That means,
\[
\dfrac{1}{2} + \dfrac{n}{{100}} = 1 \\
\Rightarrow \dfrac{n}{{100}} = 1 - \dfrac{1}{2} \\
\Rightarrow \dfrac{n}{{100}} = \dfrac{1}{2} \\
\Rightarrow n = 50 \]
Till \[n = 49\], value of function is zero.
Now for the value of the function to be \[2\], we get
\[
\dfrac{1}{2} + \dfrac{n}{{100}} = 2 \\
\Rightarrow \dfrac{n}{{100}} = 2 - \dfrac{1}{2} \\
\Rightarrow \dfrac{n}{{100}} = \dfrac{3}{2} \\
\Rightarrow n = 150 \]
Which means till \[n = 149\], the value of the function will be \[1\].
So the value of the function will be \[2\] for \[n = 150,151\].
Hence during the course of summation till \[n = 151\], we get
\[f(n) = 0\] for \[49\] values
\[f(n) = 1\] for \[100\] values
\[f(n) = 2\] for \[2\] values
So, we get the summation as
\[\sum\limits_{n = 1}^{151} {f(n)} = 0 \times 49 + 1 \times 100 + 2 \times 2 \\
\Rightarrow \sum\limits_{n = 1}^{151} {f(n)} = 100 + 4 \\
\Rightarrow \sum\limits_{n = 1}^{151} {f(n)} = 104 \]
Hence we get the answer as option C).
Note: We should take a note that whenever there is any function which is a greatest integer function, its value will always be the integer part of any number and the function will be constant till the very point where the value of the function changes to another integer. Means such a function will never give out a value with a fractional part.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths