Answer
Verified
421.5k+ views
Hint: Since we have to show $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ and for this we will write $ \left( {f + ig} \right) * \left( {f - ig} \right) $ in the composition form and it will be $ F\left( {G\left( z \right)} \right) $ . From here $ F\left( z \right) = f + ig $ and $ G\left( z \right) = f - ig $ . Then we will solve both the composite equation and then in the end putting the values we will get the solution.
Formula used:
The algebraic formula is given by,
$ \cos z - i\sin z = {e^{ - iz}} $
$ i = \sqrt { - 1} $
Here, $ i $ will be the iota.
Complete step-by-step answer:
Here, in this question, we have the values of the function given as $ f\left( z \right) = \sin z $ and $ g\left( z \right) = \cos z $ .
And we have to prove $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $
Now taking the LHS of the upper function, we get
$ \Rightarrow \left( {f + ig} \right) * \left( {f - ig} \right) $
And it can also be written in the composition form, so it will be
$ \Rightarrow F\left( z \right) * G\left( z \right) $
And it will be equal to
$ \Rightarrow F\left( {G\left( z \right)} \right) $
Since, $ F\left( z \right) = f + ig $
So, on substituting the values, we get
$ \Rightarrow F\left( z \right) = \left( {\sin z + i\cos z} \right) $
Multiplying and dividing the above equation with the same function, $ i $
We get,
$ \Rightarrow F\left( z \right) = \left( {\sin z + i\cos z} \right)\dfrac{i}{i} $
And on solving it, we get
$ \Rightarrow F\left( z \right) = \dfrac{{i\sin z + {i^2}\cos z}}{i} $
Since we know $ i = \sqrt { - 1} $ , hence
$ \Rightarrow F\left( z \right) = \dfrac{{i\sin z - \cos z}}{i} $
Taking the negative sign common, we get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i}\left( {\cos z - i\sin z} \right) $
Also, from the formula, we know that $ \cos z - i\sin z = {e^{ - iz}} $ . So by using it we get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i}{e^{ - iz}} $
Again multiplying and dividing the above equation with the same function, $ i $
We get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i} \cdot \dfrac{i}{i}{e^{ - iz}} $
And on solving it we get
$ \Rightarrow F\left( z \right) = - \dfrac{{1 \cdot i}}{{{i^2}}}{e^{ - iz}} $
Hence, it will be equal to
$ \Rightarrow F\left( z \right) = i{e^{ - iz}} $
Now we will solve, $ G\left( z \right) = f - ig $
So, on substituting the values, we get
$ \Rightarrow G\left( z \right) = \left( {\sin z - i\cos z} \right) $
Multiplying and dividing the above equation with the same function, $ i $
We get,
$ \Rightarrow G\left( z \right) = \left( {\sin z - i\cos z} \right)\dfrac{i}{i} $
And on solving it, we get
$ \Rightarrow G\left( z \right) = \dfrac{{i\sin z - {i^2}\cos z}}{i} $
Since we know $ i = \sqrt { - 1} $ , hence
$ \Rightarrow G\left( z \right) = \dfrac{{i\sin z + \cos z}}{i} $
Also, from the formula, we know that $ \cos z - i\sin z = {e^{ - iz}} $ . So by using it we get
\[ \Rightarrow G\left( z \right) = \dfrac{{{e^{iz}}}}{i}\]
Again multiplying and dividing the above equation with the same function, $ i $
We get
$ \Rightarrow G\left( z \right) = - \dfrac{1}{i} \cdot \dfrac{i}{i}{e^{iz}} $
And on solving it we get
\[ \Rightarrow G\left( z \right) = - \dfrac{{1 \cdot i}}{{ - 1}}{e^{iz}}\]
Hence, it will be equal to
$ \Rightarrow G\left( z \right) = - i{e^{iz}} $
So from the upper part of the solution,
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{i \cdot \left( {G\left( z \right)} \right)}} $
And on substituting the values, we get
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{i \cdot \left( { - i{e^{iz}}} \right)}} $
By using identities, we get the equation as
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{ - {i^2}{e^{iz}}}} $
And it can also be written as
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{{e^{iz}}}} $
Since, we can see that LHS is equal to RHS,
Therefore, it is proved that $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ will be equal.
So, the correct answer is “ $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ ”.
Note: Solving composite functions means we have to find the composition of two functions. By rewriting the composite function in a different form we will be able to reach close to the answer. And lastly, by substituting the values we get it.
Formula used:
The algebraic formula is given by,
$ \cos z - i\sin z = {e^{ - iz}} $
$ i = \sqrt { - 1} $
Here, $ i $ will be the iota.
Complete step-by-step answer:
Here, in this question, we have the values of the function given as $ f\left( z \right) = \sin z $ and $ g\left( z \right) = \cos z $ .
And we have to prove $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $
Now taking the LHS of the upper function, we get
$ \Rightarrow \left( {f + ig} \right) * \left( {f - ig} \right) $
And it can also be written in the composition form, so it will be
$ \Rightarrow F\left( z \right) * G\left( z \right) $
And it will be equal to
$ \Rightarrow F\left( {G\left( z \right)} \right) $
Since, $ F\left( z \right) = f + ig $
So, on substituting the values, we get
$ \Rightarrow F\left( z \right) = \left( {\sin z + i\cos z} \right) $
Multiplying and dividing the above equation with the same function, $ i $
We get,
$ \Rightarrow F\left( z \right) = \left( {\sin z + i\cos z} \right)\dfrac{i}{i} $
And on solving it, we get
$ \Rightarrow F\left( z \right) = \dfrac{{i\sin z + {i^2}\cos z}}{i} $
Since we know $ i = \sqrt { - 1} $ , hence
$ \Rightarrow F\left( z \right) = \dfrac{{i\sin z - \cos z}}{i} $
Taking the negative sign common, we get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i}\left( {\cos z - i\sin z} \right) $
Also, from the formula, we know that $ \cos z - i\sin z = {e^{ - iz}} $ . So by using it we get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i}{e^{ - iz}} $
Again multiplying and dividing the above equation with the same function, $ i $
We get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i} \cdot \dfrac{i}{i}{e^{ - iz}} $
And on solving it we get
$ \Rightarrow F\left( z \right) = - \dfrac{{1 \cdot i}}{{{i^2}}}{e^{ - iz}} $
Hence, it will be equal to
$ \Rightarrow F\left( z \right) = i{e^{ - iz}} $
Now we will solve, $ G\left( z \right) = f - ig $
So, on substituting the values, we get
$ \Rightarrow G\left( z \right) = \left( {\sin z - i\cos z} \right) $
Multiplying and dividing the above equation with the same function, $ i $
We get,
$ \Rightarrow G\left( z \right) = \left( {\sin z - i\cos z} \right)\dfrac{i}{i} $
And on solving it, we get
$ \Rightarrow G\left( z \right) = \dfrac{{i\sin z - {i^2}\cos z}}{i} $
Since we know $ i = \sqrt { - 1} $ , hence
$ \Rightarrow G\left( z \right) = \dfrac{{i\sin z + \cos z}}{i} $
Also, from the formula, we know that $ \cos z - i\sin z = {e^{ - iz}} $ . So by using it we get
\[ \Rightarrow G\left( z \right) = \dfrac{{{e^{iz}}}}{i}\]
Again multiplying and dividing the above equation with the same function, $ i $
We get
$ \Rightarrow G\left( z \right) = - \dfrac{1}{i} \cdot \dfrac{i}{i}{e^{iz}} $
And on solving it we get
\[ \Rightarrow G\left( z \right) = - \dfrac{{1 \cdot i}}{{ - 1}}{e^{iz}}\]
Hence, it will be equal to
$ \Rightarrow G\left( z \right) = - i{e^{iz}} $
So from the upper part of the solution,
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{i \cdot \left( {G\left( z \right)} \right)}} $
And on substituting the values, we get
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{i \cdot \left( { - i{e^{iz}}} \right)}} $
By using identities, we get the equation as
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{ - {i^2}{e^{iz}}}} $
And it can also be written as
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{{e^{iz}}}} $
Since, we can see that LHS is equal to RHS,
Therefore, it is proved that $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ will be equal.
So, the correct answer is “ $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ ”.
Note: Solving composite functions means we have to find the composition of two functions. By rewriting the composite function in a different form we will be able to reach close to the answer. And lastly, by substituting the values we get it.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE