
Let $ f\left( z \right) = \sin z $ and $ g\left( z \right) = \cos z $ . If $ * $ denotes a composition of the function then show that $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ .
$ i = \sqrt { - 1} $
Answer
565.2k+ views
Hint: Since we have to show $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ and for this we will write $ \left( {f + ig} \right) * \left( {f - ig} \right) $ in the composition form and it will be $ F\left( {G\left( z \right)} \right) $ . From here $ F\left( z \right) = f + ig $ and $ G\left( z \right) = f - ig $ . Then we will solve both the composite equation and then in the end putting the values we will get the solution.
Formula used:
The algebraic formula is given by,
$ \cos z - i\sin z = {e^{ - iz}} $
$ i = \sqrt { - 1} $
Here, $ i $ will be the iota.
Complete step-by-step answer:
Here, in this question, we have the values of the function given as $ f\left( z \right) = \sin z $ and $ g\left( z \right) = \cos z $ .
And we have to prove $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $
Now taking the LHS of the upper function, we get
$ \Rightarrow \left( {f + ig} \right) * \left( {f - ig} \right) $
And it can also be written in the composition form, so it will be
$ \Rightarrow F\left( z \right) * G\left( z \right) $
And it will be equal to
$ \Rightarrow F\left( {G\left( z \right)} \right) $
Since, $ F\left( z \right) = f + ig $
So, on substituting the values, we get
$ \Rightarrow F\left( z \right) = \left( {\sin z + i\cos z} \right) $
Multiplying and dividing the above equation with the same function, $ i $
We get,
$ \Rightarrow F\left( z \right) = \left( {\sin z + i\cos z} \right)\dfrac{i}{i} $
And on solving it, we get
$ \Rightarrow F\left( z \right) = \dfrac{{i\sin z + {i^2}\cos z}}{i} $
Since we know $ i = \sqrt { - 1} $ , hence
$ \Rightarrow F\left( z \right) = \dfrac{{i\sin z - \cos z}}{i} $
Taking the negative sign common, we get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i}\left( {\cos z - i\sin z} \right) $
Also, from the formula, we know that $ \cos z - i\sin z = {e^{ - iz}} $ . So by using it we get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i}{e^{ - iz}} $
Again multiplying and dividing the above equation with the same function, $ i $
We get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i} \cdot \dfrac{i}{i}{e^{ - iz}} $
And on solving it we get
$ \Rightarrow F\left( z \right) = - \dfrac{{1 \cdot i}}{{{i^2}}}{e^{ - iz}} $
Hence, it will be equal to
$ \Rightarrow F\left( z \right) = i{e^{ - iz}} $
Now we will solve, $ G\left( z \right) = f - ig $
So, on substituting the values, we get
$ \Rightarrow G\left( z \right) = \left( {\sin z - i\cos z} \right) $
Multiplying and dividing the above equation with the same function, $ i $
We get,
$ \Rightarrow G\left( z \right) = \left( {\sin z - i\cos z} \right)\dfrac{i}{i} $
And on solving it, we get
$ \Rightarrow G\left( z \right) = \dfrac{{i\sin z - {i^2}\cos z}}{i} $
Since we know $ i = \sqrt { - 1} $ , hence
$ \Rightarrow G\left( z \right) = \dfrac{{i\sin z + \cos z}}{i} $
Also, from the formula, we know that $ \cos z - i\sin z = {e^{ - iz}} $ . So by using it we get
\[ \Rightarrow G\left( z \right) = \dfrac{{{e^{iz}}}}{i}\]
Again multiplying and dividing the above equation with the same function, $ i $
We get
$ \Rightarrow G\left( z \right) = - \dfrac{1}{i} \cdot \dfrac{i}{i}{e^{iz}} $
And on solving it we get
\[ \Rightarrow G\left( z \right) = - \dfrac{{1 \cdot i}}{{ - 1}}{e^{iz}}\]
Hence, it will be equal to
$ \Rightarrow G\left( z \right) = - i{e^{iz}} $
So from the upper part of the solution,
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{i \cdot \left( {G\left( z \right)} \right)}} $
And on substituting the values, we get
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{i \cdot \left( { - i{e^{iz}}} \right)}} $
By using identities, we get the equation as
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{ - {i^2}{e^{iz}}}} $
And it can also be written as
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{{e^{iz}}}} $
Since, we can see that LHS is equal to RHS,
Therefore, it is proved that $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ will be equal.
So, the correct answer is “ $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ ”.
Note: Solving composite functions means we have to find the composition of two functions. By rewriting the composite function in a different form we will be able to reach close to the answer. And lastly, by substituting the values we get it.
Formula used:
The algebraic formula is given by,
$ \cos z - i\sin z = {e^{ - iz}} $
$ i = \sqrt { - 1} $
Here, $ i $ will be the iota.
Complete step-by-step answer:
Here, in this question, we have the values of the function given as $ f\left( z \right) = \sin z $ and $ g\left( z \right) = \cos z $ .
And we have to prove $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $
Now taking the LHS of the upper function, we get
$ \Rightarrow \left( {f + ig} \right) * \left( {f - ig} \right) $
And it can also be written in the composition form, so it will be
$ \Rightarrow F\left( z \right) * G\left( z \right) $
And it will be equal to
$ \Rightarrow F\left( {G\left( z \right)} \right) $
Since, $ F\left( z \right) = f + ig $
So, on substituting the values, we get
$ \Rightarrow F\left( z \right) = \left( {\sin z + i\cos z} \right) $
Multiplying and dividing the above equation with the same function, $ i $
We get,
$ \Rightarrow F\left( z \right) = \left( {\sin z + i\cos z} \right)\dfrac{i}{i} $
And on solving it, we get
$ \Rightarrow F\left( z \right) = \dfrac{{i\sin z + {i^2}\cos z}}{i} $
Since we know $ i = \sqrt { - 1} $ , hence
$ \Rightarrow F\left( z \right) = \dfrac{{i\sin z - \cos z}}{i} $
Taking the negative sign common, we get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i}\left( {\cos z - i\sin z} \right) $
Also, from the formula, we know that $ \cos z - i\sin z = {e^{ - iz}} $ . So by using it we get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i}{e^{ - iz}} $
Again multiplying and dividing the above equation with the same function, $ i $
We get
$ \Rightarrow F\left( z \right) = - \dfrac{1}{i} \cdot \dfrac{i}{i}{e^{ - iz}} $
And on solving it we get
$ \Rightarrow F\left( z \right) = - \dfrac{{1 \cdot i}}{{{i^2}}}{e^{ - iz}} $
Hence, it will be equal to
$ \Rightarrow F\left( z \right) = i{e^{ - iz}} $
Now we will solve, $ G\left( z \right) = f - ig $
So, on substituting the values, we get
$ \Rightarrow G\left( z \right) = \left( {\sin z - i\cos z} \right) $
Multiplying and dividing the above equation with the same function, $ i $
We get,
$ \Rightarrow G\left( z \right) = \left( {\sin z - i\cos z} \right)\dfrac{i}{i} $
And on solving it, we get
$ \Rightarrow G\left( z \right) = \dfrac{{i\sin z - {i^2}\cos z}}{i} $
Since we know $ i = \sqrt { - 1} $ , hence
$ \Rightarrow G\left( z \right) = \dfrac{{i\sin z + \cos z}}{i} $
Also, from the formula, we know that $ \cos z - i\sin z = {e^{ - iz}} $ . So by using it we get
\[ \Rightarrow G\left( z \right) = \dfrac{{{e^{iz}}}}{i}\]
Again multiplying and dividing the above equation with the same function, $ i $
We get
$ \Rightarrow G\left( z \right) = - \dfrac{1}{i} \cdot \dfrac{i}{i}{e^{iz}} $
And on solving it we get
\[ \Rightarrow G\left( z \right) = - \dfrac{{1 \cdot i}}{{ - 1}}{e^{iz}}\]
Hence, it will be equal to
$ \Rightarrow G\left( z \right) = - i{e^{iz}} $
So from the upper part of the solution,
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{i \cdot \left( {G\left( z \right)} \right)}} $
And on substituting the values, we get
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{i \cdot \left( { - i{e^{iz}}} \right)}} $
By using identities, we get the equation as
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{ - {i^2}{e^{iz}}}} $
And it can also be written as
$ \Rightarrow F\left( {G\left( z \right)} \right) = i{e^{{e^{iz}}}} $
Since, we can see that LHS is equal to RHS,
Therefore, it is proved that $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ will be equal.
So, the correct answer is “ $ \left( {f + ig} \right) * \left( {f - ig} \right) = i{e^{ - {e^{iz}}}} $ ”.
Note: Solving composite functions means we have to find the composition of two functions. By rewriting the composite function in a different form we will be able to reach close to the answer. And lastly, by substituting the values we get it.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

