
Let $f\left( x \right) = {e^x} + \sin x$ be defined on the interval $x \in \left[ { - 4,0} \right]$, the odd extension of f(x) in the interval
[-4, 4]
$
A.{\text{ }}{e^{ - x}} + \sin x,x \in \left( {0,4} \right) \\
B.{\text{ }} - {e^{ - x}} + \sin x,x \in \left( {0,4} \right) \\
C.{\text{ }} - {e^{ - x}} - \sin x,x \in \left( {0,4} \right) \\
D.{\text{ }} - {e^{ - x}} - \cos x,x \in \left( {0,4} \right) \\
$
Answer
604.2k+ views
Hint: In this question we have been given a function f(x) which is defined in a certain interval and we have to find the odd extension of f(x) in the interval [-4, 4]. Odd extension means that the function breaks into a piecewise function which is defined over a specific interval, so simply find the breaking point of the given f(x) in the interval in which the odd extension is to be taken out.
Complete step-by-step answer:
Given function
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now we have to find out the odd extension of f(x) in the interval [-4, 4]
According to odd extension property the function break into piecewise function which is defined as in the interval [-a, a]
The odd extension of f(x) is the function
\[{f_o}\left( x \right) = \left\{
f\left( x \right),{\text{ }}x \in \left[ { - a,0} \right] \\
- f\left( { - x} \right),{\text{ }}x \in \left[ {0,a} \right] \\
\right.\] So, use this property to calculate the odd extension of the given function in the interval [-4, 4]
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now replace x with (-x) we have,
$f\left( { - x} \right) = {e^{ - x}} + \sin \left( { - x} \right)$
Now as we know $\sin \left( { - \theta } \right) = - \sin \theta $ so, use this property in the above equation we have,
$f\left( { - x} \right) = {e^{ - x}} - \sin x$
Now multiply by (-) in above equation we have,
$ - f\left( { - x} \right) = - \left( {{e^{ - x}} - \sin x} \right) = - {e^{ - x}} + \sin x$
$ - f\left( { - x} \right) = - {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right]$
Hence the odd extension of the given function in the interval [-4, 4] is
\[{f_o}\left( x \right) = \left\{
{e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right] \\
- {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right] \\
\right.\]
Hence option (b) is correct.
Note – Whenever we face such type of problems the key concept is to have the basic understanding of the odd extension defined over a period of interval, make sure that the interval given is only a subset of the domain of the given function otherwise there may arise a case even that the function is not defined. These concepts will help you get on the right track to get the answer.
Complete step-by-step answer:
Given function
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now we have to find out the odd extension of f(x) in the interval [-4, 4]
According to odd extension property the function break into piecewise function which is defined as in the interval [-a, a]
The odd extension of f(x) is the function
\[{f_o}\left( x \right) = \left\{
f\left( x \right),{\text{ }}x \in \left[ { - a,0} \right] \\
- f\left( { - x} \right),{\text{ }}x \in \left[ {0,a} \right] \\
\right.\] So, use this property to calculate the odd extension of the given function in the interval [-4, 4]
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now replace x with (-x) we have,
$f\left( { - x} \right) = {e^{ - x}} + \sin \left( { - x} \right)$
Now as we know $\sin \left( { - \theta } \right) = - \sin \theta $ so, use this property in the above equation we have,
$f\left( { - x} \right) = {e^{ - x}} - \sin x$
Now multiply by (-) in above equation we have,
$ - f\left( { - x} \right) = - \left( {{e^{ - x}} - \sin x} \right) = - {e^{ - x}} + \sin x$
$ - f\left( { - x} \right) = - {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right]$
Hence the odd extension of the given function in the interval [-4, 4] is
\[{f_o}\left( x \right) = \left\{
{e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right] \\
- {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right] \\
\right.\]
Hence option (b) is correct.
Note – Whenever we face such type of problems the key concept is to have the basic understanding of the odd extension defined over a period of interval, make sure that the interval given is only a subset of the domain of the given function otherwise there may arise a case even that the function is not defined. These concepts will help you get on the right track to get the answer.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

