Answer
Verified
491.4k+ views
Hint: In this question we have been given a function f(x) which is defined in a certain interval and we have to find the odd extension of f(x) in the interval [-4, 4]. Odd extension means that the function breaks into a piecewise function which is defined over a specific interval, so simply find the breaking point of the given f(x) in the interval in which the odd extension is to be taken out.
Complete step-by-step answer:
Given function
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now we have to find out the odd extension of f(x) in the interval [-4, 4]
According to odd extension property the function break into piecewise function which is defined as in the interval [-a, a]
The odd extension of f(x) is the function
\[{f_o}\left( x \right) = \left\{
f\left( x \right),{\text{ }}x \in \left[ { - a,0} \right] \\
- f\left( { - x} \right),{\text{ }}x \in \left[ {0,a} \right] \\
\right.\] So, use this property to calculate the odd extension of the given function in the interval [-4, 4]
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now replace x with (-x) we have,
$f\left( { - x} \right) = {e^{ - x}} + \sin \left( { - x} \right)$
Now as we know $\sin \left( { - \theta } \right) = - \sin \theta $ so, use this property in the above equation we have,
$f\left( { - x} \right) = {e^{ - x}} - \sin x$
Now multiply by (-) in above equation we have,
$ - f\left( { - x} \right) = - \left( {{e^{ - x}} - \sin x} \right) = - {e^{ - x}} + \sin x$
$ - f\left( { - x} \right) = - {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right]$
Hence the odd extension of the given function in the interval [-4, 4] is
\[{f_o}\left( x \right) = \left\{
{e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right] \\
- {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right] \\
\right.\]
Hence option (b) is correct.
Note – Whenever we face such type of problems the key concept is to have the basic understanding of the odd extension defined over a period of interval, make sure that the interval given is only a subset of the domain of the given function otherwise there may arise a case even that the function is not defined. These concepts will help you get on the right track to get the answer.
Complete step-by-step answer:
Given function
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now we have to find out the odd extension of f(x) in the interval [-4, 4]
According to odd extension property the function break into piecewise function which is defined as in the interval [-a, a]
The odd extension of f(x) is the function
\[{f_o}\left( x \right) = \left\{
f\left( x \right),{\text{ }}x \in \left[ { - a,0} \right] \\
- f\left( { - x} \right),{\text{ }}x \in \left[ {0,a} \right] \\
\right.\] So, use this property to calculate the odd extension of the given function in the interval [-4, 4]
$f\left( x \right) = {e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right]$
Now replace x with (-x) we have,
$f\left( { - x} \right) = {e^{ - x}} + \sin \left( { - x} \right)$
Now as we know $\sin \left( { - \theta } \right) = - \sin \theta $ so, use this property in the above equation we have,
$f\left( { - x} \right) = {e^{ - x}} - \sin x$
Now multiply by (-) in above equation we have,
$ - f\left( { - x} \right) = - \left( {{e^{ - x}} - \sin x} \right) = - {e^{ - x}} + \sin x$
$ - f\left( { - x} \right) = - {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right]$
Hence the odd extension of the given function in the interval [-4, 4] is
\[{f_o}\left( x \right) = \left\{
{e^x} + \sin x,{\text{ }}x \in \left[ { - 4,0} \right] \\
- {e^{ - x}} + \sin x,{\text{ }}x \in \left[ {0,4} \right] \\
\right.\]
Hence option (b) is correct.
Note – Whenever we face such type of problems the key concept is to have the basic understanding of the odd extension defined over a period of interval, make sure that the interval given is only a subset of the domain of the given function otherwise there may arise a case even that the function is not defined. These concepts will help you get on the right track to get the answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE