
Let f be a function in the set N of natural numbers defined by f(n) = 3n. Is f is a function from N to N. If so find the Range of function
Answer
603k+ views
Hint: Use the property that if f(x) is a function then for all a, b in Domain of “f”, such that a=b, we have f(a)=f(b).Range of a function is the set of all the values attainable by the function i.e. x is in Range(f) if and only if there exists y in N such that f(y) = x. Use the definition to find the Range of “f”.
Complete step-by-step answer:
We have f is defined on the set of all Natural numbers.
Now let a and b be two natural numbers such that a = b
f(a) = 3a and f(b) = 3b.
Now, we have a = b.
Multiplying both sides by 3, we get
3a = 3b, i.e. f(a) = f(b). Hence the relation f is a function on the set of natural numbers.
Now we know that Range of a function is the set of all the values attainable by the function, i.e. x is in Range(f) if and only if there exists y in N such that f(y) = x.
Now let $x\in {{R}_{f}}$
Hence from the definition, we have
$\exists n$ such that $f\left( n \right)=x$
But f(n) = 3n.
Hence, we have
x = 3n
Hence x is divisible by 3.
Also, let m be any natural number divisible by 3.
Hence there exists a natural number n such that m = 3n
Hence m = f(n).
Hence m is in ${{R}_{f}}$
Hence Range(f) is the set of all Natural numbers divisible by 3.
Hence, we have ${{R}_{f}}=\left\{ x:x\in \mathbb{N},\text{ }x\text{ is divisible by 3} \right\}$
Note: A relation is said to be a function if it maps all the points of the Domain to a unique point in the co-domain.
Consider a relation $f:A\to B$. We say f is a function if it maps all the points of A to a unique point in B. Hence a single value in A cannot be mapped to more than one points in B. Hence we have if a and b are in A and a = b, then f(a) = f(b).
The set A is called the Domain of f, and the set B is called the co-domain of f. Clearly, we have
$\text{Range}\subseteq \text{Codomain}$
Complete step-by-step answer:
We have f is defined on the set of all Natural numbers.
Now let a and b be two natural numbers such that a = b
f(a) = 3a and f(b) = 3b.
Now, we have a = b.
Multiplying both sides by 3, we get
3a = 3b, i.e. f(a) = f(b). Hence the relation f is a function on the set of natural numbers.
Now we know that Range of a function is the set of all the values attainable by the function, i.e. x is in Range(f) if and only if there exists y in N such that f(y) = x.
Now let $x\in {{R}_{f}}$
Hence from the definition, we have
$\exists n$ such that $f\left( n \right)=x$
But f(n) = 3n.
Hence, we have
x = 3n
Hence x is divisible by 3.
Also, let m be any natural number divisible by 3.
Hence there exists a natural number n such that m = 3n
Hence m = f(n).
Hence m is in ${{R}_{f}}$
Hence Range(f) is the set of all Natural numbers divisible by 3.
Hence, we have ${{R}_{f}}=\left\{ x:x\in \mathbb{N},\text{ }x\text{ is divisible by 3} \right\}$
Note: A relation is said to be a function if it maps all the points of the Domain to a unique point in the co-domain.
Consider a relation $f:A\to B$. We say f is a function if it maps all the points of A to a unique point in B. Hence a single value in A cannot be mapped to more than one points in B. Hence we have if a and b are in A and a = b, then f(a) = f(b).
The set A is called the Domain of f, and the set B is called the co-domain of f. Clearly, we have
$\text{Range}\subseteq \text{Codomain}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

