
Let \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k}\] and \[\overrightarrow{c}\] be a vector such that \[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\] and \[\overrightarrow{a}.\overrightarrow{c}=4,\] then \[{{\left| \overrightarrow{c} \right|}^{2}}\] is equal to
\[\left( a \right)\dfrac{19}{2}\]
\[\left( b \right)8\]
\[\left( c \right)\dfrac{17}{2}\]
\[\left( d \right)9\]
Answer
590.7k+ views
Hint:We are given two vectors \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k}\] and we will use \[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\] to get \[\overrightarrow{a}\times \overrightarrow{c}=-\overrightarrow{b}.\] Now, we will simplify further by applying the cross product on both the sides by \[\overrightarrow{a}.\] So, we will have \[\overrightarrow{a}\times \overrightarrow{c}\times \overrightarrow{a}=-\overrightarrow{b}\times \overrightarrow{a},\] then we will change \[-\overrightarrow{b}\times \overrightarrow{a}\] to \[\overrightarrow{a}\times \overrightarrow{b}.\] At last, we will open the triple product \[\overrightarrow{a}\times \overrightarrow{c}\times \overrightarrow{a}=\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{a}\] to find the vector c and \[{{\left| \overrightarrow{c} \right|}^{2}}.\]
We are given that we have two vectors \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k}.\] We have to find the vector c such that \[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\] and \[\overrightarrow{a}.\overrightarrow{c}=4.\] Now, we are given that,
\[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\]
So, we get,
\[\Rightarrow \overrightarrow{a}\times \overrightarrow{c}=-\overrightarrow{b}\]
Now, cross-product the above vector with vector a, we will get,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-\overrightarrow{b}\times \overrightarrow{a}\]
For any vector X and Y, we know that,
\[\overrightarrow{X}\times \overrightarrow{Y}=-\overrightarrow{Y}\times \overrightarrow{X}\]
So,
\[-\overrightarrow{b}\times \overrightarrow{a}=\overrightarrow{a}\times \overrightarrow{b}\]
Hence, we have,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=\overrightarrow{a}\times \overrightarrow{b}.....\left( i \right)\]
Now, we have to find \[\overrightarrow{a}\times \overrightarrow{b}.\]
As we have, \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k},\] so,
\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix}
i & j & k \\
1 & -1 & 0 \\
1 & 1 & 1 \\
\end{matrix} \right|\]
Expanding along row 1, we will get,
\[\overrightarrow{a}\times \overrightarrow{b}=i\left( -1\times 1-0 \right)-j\left( 1\times 1-0 \right)+k\left( 1\times 1-\left( -1\times 1 \right) \right)\]
Solving further, we get,
\[\Rightarrow \overrightarrow{a}\times \overrightarrow{b}=-i-j+2k\]
Using this in equation (i), we will get,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-i-j+2k\]
Now, we know that our triple product is given as,
\[\left( \overrightarrow{A}\times \overrightarrow{B} \right)\times \overrightarrow{C}=\left( \overrightarrow{A}.\overrightarrow{C} \right).\overrightarrow{B}-\left( \overrightarrow{A}.\overrightarrow{B} \right).\overrightarrow{C}\]
So, \[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}\] is given as
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{c}.\overrightarrow{a} \right)\overrightarrow{a}\]
So, using this in \[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-i-j+2k\] we get,
\[\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{c}.\overrightarrow{a} \right).\overrightarrow{a}=-i-j+2k\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=\left( i-j \right).\left( i-j \right)\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=1+1\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=2\]
And, \[\overrightarrow{c}.\overrightarrow{a}=4.\] So, we will get,
\[2\overrightarrow{c}-4\overrightarrow{a}=-i-j+2k\]
As, \[\overrightarrow{a}=\widehat{i}-\widehat{j}\] we will get,
\[2\overrightarrow{c}=-i-j+2k+4\left( i-j \right)\]
Simplifying, we get,
\[2\overrightarrow{c}=3i-5j+2k\]
Dividing both the sides by 2, we will get,
\[\Rightarrow \overrightarrow{c}=\dfrac{3}{2}i-\dfrac{5}{2}j+k\]
Now,
\[{{\left| \overrightarrow{c} \right|}^{2}}=\overrightarrow{c}.\overrightarrow{c}\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\]
After simplification, we will get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{3}{2}\times \dfrac{3}{2}+\left( \dfrac{-5}{2}\times \dfrac{-5}{2} \right)+1\times 1\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{9}{4}+\dfrac{25}{4}+1\]
Solving further, we get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{38}{4}\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{19}{2}\]
Hence, option (a) is the right answer.
Note: The dot product of two vectors is defined as the product of the sum of the product of the corresponding vector entries. If a = xi + yj and b = ci + dj, we get,
\[a.b=\left( xi+yj \right)\left( ci+dj \right)\]
\[\Rightarrow a.b=xc+yd\]
That’s, why,
\[\overrightarrow{c}.\overrightarrow{c}=\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right).\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\]
We get,
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{3}{2}\times \dfrac{3}{2}+\left( \dfrac{-5}{2}\times \dfrac{-5}{2} \right)+1\times 1\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{9}{4}+\dfrac{25}{4}+1\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{9+25+4}{4}\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{38}{4}\]
Simplifying, we get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{19}{2}\]
We are given that we have two vectors \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k}.\] We have to find the vector c such that \[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\] and \[\overrightarrow{a}.\overrightarrow{c}=4.\] Now, we are given that,
\[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\]
So, we get,
\[\Rightarrow \overrightarrow{a}\times \overrightarrow{c}=-\overrightarrow{b}\]
Now, cross-product the above vector with vector a, we will get,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-\overrightarrow{b}\times \overrightarrow{a}\]
For any vector X and Y, we know that,
\[\overrightarrow{X}\times \overrightarrow{Y}=-\overrightarrow{Y}\times \overrightarrow{X}\]
So,
\[-\overrightarrow{b}\times \overrightarrow{a}=\overrightarrow{a}\times \overrightarrow{b}\]
Hence, we have,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=\overrightarrow{a}\times \overrightarrow{b}.....\left( i \right)\]
Now, we have to find \[\overrightarrow{a}\times \overrightarrow{b}.\]
As we have, \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k},\] so,
\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix}
i & j & k \\
1 & -1 & 0 \\
1 & 1 & 1 \\
\end{matrix} \right|\]
Expanding along row 1, we will get,
\[\overrightarrow{a}\times \overrightarrow{b}=i\left( -1\times 1-0 \right)-j\left( 1\times 1-0 \right)+k\left( 1\times 1-\left( -1\times 1 \right) \right)\]
Solving further, we get,
\[\Rightarrow \overrightarrow{a}\times \overrightarrow{b}=-i-j+2k\]
Using this in equation (i), we will get,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-i-j+2k\]
Now, we know that our triple product is given as,
\[\left( \overrightarrow{A}\times \overrightarrow{B} \right)\times \overrightarrow{C}=\left( \overrightarrow{A}.\overrightarrow{C} \right).\overrightarrow{B}-\left( \overrightarrow{A}.\overrightarrow{B} \right).\overrightarrow{C}\]
So, \[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}\] is given as
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{c}.\overrightarrow{a} \right)\overrightarrow{a}\]
So, using this in \[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-i-j+2k\] we get,
\[\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{c}.\overrightarrow{a} \right).\overrightarrow{a}=-i-j+2k\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=\left( i-j \right).\left( i-j \right)\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=1+1\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=2\]
And, \[\overrightarrow{c}.\overrightarrow{a}=4.\] So, we will get,
\[2\overrightarrow{c}-4\overrightarrow{a}=-i-j+2k\]
As, \[\overrightarrow{a}=\widehat{i}-\widehat{j}\] we will get,
\[2\overrightarrow{c}=-i-j+2k+4\left( i-j \right)\]
Simplifying, we get,
\[2\overrightarrow{c}=3i-5j+2k\]
Dividing both the sides by 2, we will get,
\[\Rightarrow \overrightarrow{c}=\dfrac{3}{2}i-\dfrac{5}{2}j+k\]
Now,
\[{{\left| \overrightarrow{c} \right|}^{2}}=\overrightarrow{c}.\overrightarrow{c}\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\]
After simplification, we will get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{3}{2}\times \dfrac{3}{2}+\left( \dfrac{-5}{2}\times \dfrac{-5}{2} \right)+1\times 1\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{9}{4}+\dfrac{25}{4}+1\]
Solving further, we get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{38}{4}\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{19}{2}\]
Hence, option (a) is the right answer.
Note: The dot product of two vectors is defined as the product of the sum of the product of the corresponding vector entries. If a = xi + yj and b = ci + dj, we get,
\[a.b=\left( xi+yj \right)\left( ci+dj \right)\]
\[\Rightarrow a.b=xc+yd\]
That’s, why,
\[\overrightarrow{c}.\overrightarrow{c}=\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right).\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\]
We get,
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{3}{2}\times \dfrac{3}{2}+\left( \dfrac{-5}{2}\times \dfrac{-5}{2} \right)+1\times 1\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{9}{4}+\dfrac{25}{4}+1\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{9+25+4}{4}\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{38}{4}\]
Simplifying, we get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{19}{2}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

