
Let \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k}\] and \[\overrightarrow{c}\] be a vector such that \[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\] and \[\overrightarrow{a}.\overrightarrow{c}=4,\] then \[{{\left| \overrightarrow{c} \right|}^{2}}\] is equal to
\[\left( a \right)\dfrac{19}{2}\]
\[\left( b \right)8\]
\[\left( c \right)\dfrac{17}{2}\]
\[\left( d \right)9\]
Answer
577.5k+ views
Hint:We are given two vectors \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k}\] and we will use \[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\] to get \[\overrightarrow{a}\times \overrightarrow{c}=-\overrightarrow{b}.\] Now, we will simplify further by applying the cross product on both the sides by \[\overrightarrow{a}.\] So, we will have \[\overrightarrow{a}\times \overrightarrow{c}\times \overrightarrow{a}=-\overrightarrow{b}\times \overrightarrow{a},\] then we will change \[-\overrightarrow{b}\times \overrightarrow{a}\] to \[\overrightarrow{a}\times \overrightarrow{b}.\] At last, we will open the triple product \[\overrightarrow{a}\times \overrightarrow{c}\times \overrightarrow{a}=\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{a}\] to find the vector c and \[{{\left| \overrightarrow{c} \right|}^{2}}.\]
We are given that we have two vectors \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k}.\] We have to find the vector c such that \[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\] and \[\overrightarrow{a}.\overrightarrow{c}=4.\] Now, we are given that,
\[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\]
So, we get,
\[\Rightarrow \overrightarrow{a}\times \overrightarrow{c}=-\overrightarrow{b}\]
Now, cross-product the above vector with vector a, we will get,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-\overrightarrow{b}\times \overrightarrow{a}\]
For any vector X and Y, we know that,
\[\overrightarrow{X}\times \overrightarrow{Y}=-\overrightarrow{Y}\times \overrightarrow{X}\]
So,
\[-\overrightarrow{b}\times \overrightarrow{a}=\overrightarrow{a}\times \overrightarrow{b}\]
Hence, we have,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=\overrightarrow{a}\times \overrightarrow{b}.....\left( i \right)\]
Now, we have to find \[\overrightarrow{a}\times \overrightarrow{b}.\]
As we have, \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k},\] so,
\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix}
i & j & k \\
1 & -1 & 0 \\
1 & 1 & 1 \\
\end{matrix} \right|\]
Expanding along row 1, we will get,
\[\overrightarrow{a}\times \overrightarrow{b}=i\left( -1\times 1-0 \right)-j\left( 1\times 1-0 \right)+k\left( 1\times 1-\left( -1\times 1 \right) \right)\]
Solving further, we get,
\[\Rightarrow \overrightarrow{a}\times \overrightarrow{b}=-i-j+2k\]
Using this in equation (i), we will get,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-i-j+2k\]
Now, we know that our triple product is given as,
\[\left( \overrightarrow{A}\times \overrightarrow{B} \right)\times \overrightarrow{C}=\left( \overrightarrow{A}.\overrightarrow{C} \right).\overrightarrow{B}-\left( \overrightarrow{A}.\overrightarrow{B} \right).\overrightarrow{C}\]
So, \[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}\] is given as
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{c}.\overrightarrow{a} \right)\overrightarrow{a}\]
So, using this in \[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-i-j+2k\] we get,
\[\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{c}.\overrightarrow{a} \right).\overrightarrow{a}=-i-j+2k\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=\left( i-j \right).\left( i-j \right)\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=1+1\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=2\]
And, \[\overrightarrow{c}.\overrightarrow{a}=4.\] So, we will get,
\[2\overrightarrow{c}-4\overrightarrow{a}=-i-j+2k\]
As, \[\overrightarrow{a}=\widehat{i}-\widehat{j}\] we will get,
\[2\overrightarrow{c}=-i-j+2k+4\left( i-j \right)\]
Simplifying, we get,
\[2\overrightarrow{c}=3i-5j+2k\]
Dividing both the sides by 2, we will get,
\[\Rightarrow \overrightarrow{c}=\dfrac{3}{2}i-\dfrac{5}{2}j+k\]
Now,
\[{{\left| \overrightarrow{c} \right|}^{2}}=\overrightarrow{c}.\overrightarrow{c}\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\]
After simplification, we will get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{3}{2}\times \dfrac{3}{2}+\left( \dfrac{-5}{2}\times \dfrac{-5}{2} \right)+1\times 1\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{9}{4}+\dfrac{25}{4}+1\]
Solving further, we get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{38}{4}\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{19}{2}\]
Hence, option (a) is the right answer.
Note: The dot product of two vectors is defined as the product of the sum of the product of the corresponding vector entries. If a = xi + yj and b = ci + dj, we get,
\[a.b=\left( xi+yj \right)\left( ci+dj \right)\]
\[\Rightarrow a.b=xc+yd\]
That’s, why,
\[\overrightarrow{c}.\overrightarrow{c}=\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right).\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\]
We get,
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{3}{2}\times \dfrac{3}{2}+\left( \dfrac{-5}{2}\times \dfrac{-5}{2} \right)+1\times 1\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{9}{4}+\dfrac{25}{4}+1\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{9+25+4}{4}\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{38}{4}\]
Simplifying, we get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{19}{2}\]
We are given that we have two vectors \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k}.\] We have to find the vector c such that \[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\] and \[\overrightarrow{a}.\overrightarrow{c}=4.\] Now, we are given that,
\[\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}=\overrightarrow{0}\]
So, we get,
\[\Rightarrow \overrightarrow{a}\times \overrightarrow{c}=-\overrightarrow{b}\]
Now, cross-product the above vector with vector a, we will get,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-\overrightarrow{b}\times \overrightarrow{a}\]
For any vector X and Y, we know that,
\[\overrightarrow{X}\times \overrightarrow{Y}=-\overrightarrow{Y}\times \overrightarrow{X}\]
So,
\[-\overrightarrow{b}\times \overrightarrow{a}=\overrightarrow{a}\times \overrightarrow{b}\]
Hence, we have,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=\overrightarrow{a}\times \overrightarrow{b}.....\left( i \right)\]
Now, we have to find \[\overrightarrow{a}\times \overrightarrow{b}.\]
As we have, \[\overrightarrow{a}=\widehat{i}-\widehat{j},\overrightarrow{b}=\widehat{i}+\widehat{j}+\widehat{k},\] so,
\[\overrightarrow{a}\times \overrightarrow{b}=\left| \begin{matrix}
i & j & k \\
1 & -1 & 0 \\
1 & 1 & 1 \\
\end{matrix} \right|\]
Expanding along row 1, we will get,
\[\overrightarrow{a}\times \overrightarrow{b}=i\left( -1\times 1-0 \right)-j\left( 1\times 1-0 \right)+k\left( 1\times 1-\left( -1\times 1 \right) \right)\]
Solving further, we get,
\[\Rightarrow \overrightarrow{a}\times \overrightarrow{b}=-i-j+2k\]
Using this in equation (i), we will get,
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-i-j+2k\]
Now, we know that our triple product is given as,
\[\left( \overrightarrow{A}\times \overrightarrow{B} \right)\times \overrightarrow{C}=\left( \overrightarrow{A}.\overrightarrow{C} \right).\overrightarrow{B}-\left( \overrightarrow{A}.\overrightarrow{B} \right).\overrightarrow{C}\]
So, \[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}\] is given as
\[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{c}.\overrightarrow{a} \right)\overrightarrow{a}\]
So, using this in \[\left( \overrightarrow{a}\times \overrightarrow{c} \right)\times \overrightarrow{a}=-i-j+2k\] we get,
\[\left( \overrightarrow{a}.\overrightarrow{a} \right).\overrightarrow{c}-\left( \overrightarrow{c}.\overrightarrow{a} \right).\overrightarrow{a}=-i-j+2k\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=\left( i-j \right).\left( i-j \right)\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=1+1\]
\[\Rightarrow \left( \overrightarrow{a}.\overrightarrow{a} \right)=2\]
And, \[\overrightarrow{c}.\overrightarrow{a}=4.\] So, we will get,
\[2\overrightarrow{c}-4\overrightarrow{a}=-i-j+2k\]
As, \[\overrightarrow{a}=\widehat{i}-\widehat{j}\] we will get,
\[2\overrightarrow{c}=-i-j+2k+4\left( i-j \right)\]
Simplifying, we get,
\[2\overrightarrow{c}=3i-5j+2k\]
Dividing both the sides by 2, we will get,
\[\Rightarrow \overrightarrow{c}=\dfrac{3}{2}i-\dfrac{5}{2}j+k\]
Now,
\[{{\left| \overrightarrow{c} \right|}^{2}}=\overrightarrow{c}.\overrightarrow{c}\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\]
After simplification, we will get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{3}{2}\times \dfrac{3}{2}+\left( \dfrac{-5}{2}\times \dfrac{-5}{2} \right)+1\times 1\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{9}{4}+\dfrac{25}{4}+1\]
Solving further, we get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{38}{4}\]
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{19}{2}\]
Hence, option (a) is the right answer.
Note: The dot product of two vectors is defined as the product of the sum of the product of the corresponding vector entries. If a = xi + yj and b = ci + dj, we get,
\[a.b=\left( xi+yj \right)\left( ci+dj \right)\]
\[\Rightarrow a.b=xc+yd\]
That’s, why,
\[\overrightarrow{c}.\overrightarrow{c}=\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right).\left( \dfrac{3}{2}i-\dfrac{5}{2}j+k \right)\]
We get,
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{3}{2}\times \dfrac{3}{2}+\left( \dfrac{-5}{2}\times \dfrac{-5}{2} \right)+1\times 1\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{9}{4}+\dfrac{25}{4}+1\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{9+25+4}{4}\]
\[\Rightarrow \overrightarrow{c}.\overrightarrow{c}=\dfrac{38}{4}\]
Simplifying, we get,
\[\Rightarrow {{\left| \overrightarrow{c} \right|}^{2}}=\dfrac{19}{2}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

