Answer

Verified

459k+ views

Hint- Here, we will be using the concept of complex conjugate pairs and the formulas for sum and product of the roots of any quadratic equation.

Given, quadratic equation is ${z^2} + \alpha z + \beta = 0{\text{ }} \to {\text{(1)}}$ where $\alpha ,\beta $ be real and $z$ be a complex number.

It is also given that the two distinct roots of the above quadratic equation lies on the line ${\text{Re}}\left( z \right) = 1$ which means that the real part of both the roots is 1.

As we know that the complex roots corresponding to any quadratic equation occurs in conjugate pairs.

Therefore, let us suppose the two distinct roots of the given quadratic equation be \[{z_1} = 1 + i\left( a \right)\] \[{z_2} = 1 - i\left( a \right)\].

Also we know that for any general quadratic equation $a{z^2} + bz + c = 0{\text{ }} \to {\text{(2)}}$ with two roots as ${z_1}$ and ${z_2}$,

Sum of roots of the quadratic equation, ${z_1} + {z_2} = \dfrac{{ - b}}{a}{\text{ }} \to {\text{(3)}}$

Product of roots of the quadratic equation, ${z_1}{z_2} = \dfrac{c}{a}{\text{ }} \to {\text{(4)}}$

On comparing equation (1) with equation (2), we get

$a = 1,{\text{ }}b = \alpha $ and $c = \beta $

Using equation (3), we get

${z_1} + {z_2} = \dfrac{{ - b}}{a} \Rightarrow 1 + i\left( a \right) + 1 - i\left( a \right) = \dfrac{{ - \alpha }}{1} \Rightarrow 2 = - \alpha \Rightarrow \alpha = - 2$

Using equation (4), we get

\[{z_1}{z_2} = \dfrac{c}{a} \Rightarrow \left[ {1 + i\left( a \right)} \right]\left[ {1 - i\left( a \right)} \right] = \dfrac{\beta }{1} \Rightarrow 1 + i\left( a \right) - i\left( a \right) - {i^2}\left( {{a^2}} \right) = \beta \Rightarrow 1 - {i^2}\left( {{a^2}} \right) = \beta \]

As we know that ${i^2} = - 1$ \[ \Rightarrow 1 - \left( { - 1} \right)\left( {{a^2}} \right) = \beta \Rightarrow \beta = 1 + {a^2}\]

Also we know that ${a^2} \geqslant 0$ (always) $ \Rightarrow 1 + {a^2} \geqslant 1 \Rightarrow \beta \geqslant 1 \Rightarrow \beta \in [1,\infty )$

Hence, option D is correct.

Note- For any general quadratic equation $a{z^2} + bz + c = 0$ where $z$ is a complex number, if one of the root is $d + i\left( e \right)$ then the other root will appear as the complex conjugate of the first root i.e., $d - i\left( e \right)$.

Given, quadratic equation is ${z^2} + \alpha z + \beta = 0{\text{ }} \to {\text{(1)}}$ where $\alpha ,\beta $ be real and $z$ be a complex number.

It is also given that the two distinct roots of the above quadratic equation lies on the line ${\text{Re}}\left( z \right) = 1$ which means that the real part of both the roots is 1.

As we know that the complex roots corresponding to any quadratic equation occurs in conjugate pairs.

Therefore, let us suppose the two distinct roots of the given quadratic equation be \[{z_1} = 1 + i\left( a \right)\] \[{z_2} = 1 - i\left( a \right)\].

Also we know that for any general quadratic equation $a{z^2} + bz + c = 0{\text{ }} \to {\text{(2)}}$ with two roots as ${z_1}$ and ${z_2}$,

Sum of roots of the quadratic equation, ${z_1} + {z_2} = \dfrac{{ - b}}{a}{\text{ }} \to {\text{(3)}}$

Product of roots of the quadratic equation, ${z_1}{z_2} = \dfrac{c}{a}{\text{ }} \to {\text{(4)}}$

On comparing equation (1) with equation (2), we get

$a = 1,{\text{ }}b = \alpha $ and $c = \beta $

Using equation (3), we get

${z_1} + {z_2} = \dfrac{{ - b}}{a} \Rightarrow 1 + i\left( a \right) + 1 - i\left( a \right) = \dfrac{{ - \alpha }}{1} \Rightarrow 2 = - \alpha \Rightarrow \alpha = - 2$

Using equation (4), we get

\[{z_1}{z_2} = \dfrac{c}{a} \Rightarrow \left[ {1 + i\left( a \right)} \right]\left[ {1 - i\left( a \right)} \right] = \dfrac{\beta }{1} \Rightarrow 1 + i\left( a \right) - i\left( a \right) - {i^2}\left( {{a^2}} \right) = \beta \Rightarrow 1 - {i^2}\left( {{a^2}} \right) = \beta \]

As we know that ${i^2} = - 1$ \[ \Rightarrow 1 - \left( { - 1} \right)\left( {{a^2}} \right) = \beta \Rightarrow \beta = 1 + {a^2}\]

Also we know that ${a^2} \geqslant 0$ (always) $ \Rightarrow 1 + {a^2} \geqslant 1 \Rightarrow \beta \geqslant 1 \Rightarrow \beta \in [1,\infty )$

Hence, option D is correct.

Note- For any general quadratic equation $a{z^2} + bz + c = 0$ where $z$ is a complex number, if one of the root is $d + i\left( e \right)$ then the other root will appear as the complex conjugate of the first root i.e., $d - i\left( e \right)$.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Change the following sentences into negative and interrogative class 10 english CBSE