Answer
Verified
448.5k+ views
Hint: We have given $\alpha $ and $\beta $ as two real roots that means when we put $\alpha $ and $\beta $ in the place of x then the equation will be satisfied. Given a quadratic equation is quadratic in tan and hence the roots of the equation will be $\tan \alpha $ and $\tan \beta $. Now apply the relation of sum of roots and product of roots to proceed further.
Complete step-by-step answer:
We have given
$\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x = \left( {1 - k} \right)$
We can rewrite it as :
$\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x + \left( {k - 1} \right) = 0$
Roots of this quadratic equation are $\tan \alpha $ and $\tan \beta $.
From the property of sum of roots and product of roots we can write
$\tan \alpha + \tan \beta = \dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}$
$\tan \alpha \times \tan \beta = \dfrac{{\left( {k - 1} \right)}}{{\left( {k + 1} \right)}}$
And we know the formula
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}$
On putting values from above we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}}}{{1 - \dfrac{{\left( {k - 1} \right)}}{{\left( {k + 1} \right)}}}}$
On further solving we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}}}{{\dfrac{{\left( {k + 1} \right) - \left( {k - 1} \right)}}{{\left( {k + 1} \right)}}}}$
On cancel out we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\sqrt 2 \lambda }}{2} = \dfrac{\lambda }{{\sqrt 2 }}$
And hence on squaring we get,
${\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{{\lambda ^2}}}{2}$
And we have given in the question ${\tan ^2}\left( {\alpha + \beta } \right) = 50$
On comparing both equation we get
$
\dfrac{{{\lambda ^2}}}{2} = 50 \\
{\lambda ^2} = 100 \\
\therefore \lambda = \pm 10 \\
$
Note: Whenever we get this type of question the key concept of solving is we have to remember the formula of quadratic equations like properties on sum of roots and product of roots. And also remember $\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}$ this type of formula are very helpful in solving this type of question.
Complete step-by-step answer:
We have given
$\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x = \left( {1 - k} \right)$
We can rewrite it as :
$\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x + \left( {k - 1} \right) = 0$
Roots of this quadratic equation are $\tan \alpha $ and $\tan \beta $.
From the property of sum of roots and product of roots we can write
$\tan \alpha + \tan \beta = \dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}$
$\tan \alpha \times \tan \beta = \dfrac{{\left( {k - 1} \right)}}{{\left( {k + 1} \right)}}$
And we know the formula
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}$
On putting values from above we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}}}{{1 - \dfrac{{\left( {k - 1} \right)}}{{\left( {k + 1} \right)}}}}$
On further solving we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}}}{{\dfrac{{\left( {k + 1} \right) - \left( {k - 1} \right)}}{{\left( {k + 1} \right)}}}}$
On cancel out we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\sqrt 2 \lambda }}{2} = \dfrac{\lambda }{{\sqrt 2 }}$
And hence on squaring we get,
${\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{{\lambda ^2}}}{2}$
And we have given in the question ${\tan ^2}\left( {\alpha + \beta } \right) = 50$
On comparing both equation we get
$
\dfrac{{{\lambda ^2}}}{2} = 50 \\
{\lambda ^2} = 100 \\
\therefore \lambda = \pm 10 \\
$
Note: Whenever we get this type of question the key concept of solving is we have to remember the formula of quadratic equations like properties on sum of roots and product of roots. And also remember $\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}$ this type of formula are very helpful in solving this type of question.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell