
Let $\alpha $ and $\beta $ be the roots of equation ${{x}^{2}}+x+1=0$ , then for $y\ne 0$ in R, $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|$ is equals to?
(a) ${{y}^{3}}$
(b) ${{y}^{3}}-1$
(c) $y({{y}^{2}}-1)$
(d) $y({{y}^{2}}-3)$
Answer
574.2k+ views
Hint: To solve this determinant, what we will do is firstly, we will find out the roots of the quadratic equation ${{x}^{2}}+x+1=0$. Then, we will use row and column elementary transformation and property of the cube root of unity which is $1+\omega +{{\omega }^{2}}=0$ to solve the determinant.
Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Firstly, finding roots of quadratic equation ${{x}^{2}}+x+1=0$, by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ by comparing with $a{{x}^{2}}+bx+c=0$ , we get
a = 1, b = 1 c =1
so, $x=\dfrac{-1\pm \sqrt{{{1}^{2}}-4(1)(1)}}{2(1)}$
On solving, we get
$x=\dfrac{-1\pm i\sqrt{3}}{2}$
Let, $\alpha =\omega =\dfrac{-1+i\sqrt{3}}{2}$ and $\beta ={{\omega }^{2}}=\dfrac{-1-i\sqrt{3}}{2}$
Now, we have to evaluate $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|$
Or, $\left| \begin{matrix}
1+y & \omega & {{\omega }^{2}} \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}$ , we get
$=\left| \begin{matrix}
1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
We know that, $1+\omega +{{\omega }^{2}}=0$
So, $=\left| \begin{matrix}
y & y & y \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Taking y common from first row, we get
$=y\left| \begin{matrix}
1 & 1 & 1 \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Using elementary row operation ${{C}_{1}}\to {{C}_{1}}-{{C}_{2}}$ and elementary row operation ${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$, we get
\[=y\left| \begin{matrix}
0 & 0 & 1 \\
\omega -y-{{\omega }^{2}} & y+{{\omega }^{2}}-1 & 1 \\
{{\omega }^{2}}-1 & 1-y-\omega & y+\omega \\
\end{matrix} \right|\]
Expanding determinant along row ${{R}_{1}}$, we get
\[=y\left[ 0-0+1\left( \left( \omega -y-{{\omega }^{2}} \right)\cdot \left( 1-y-\omega \right)-(y+{{\omega }^{2}}-1)\cdot ({{\omega }^{2}}-1) \right) \right]\]
On simplifying by solving the brackets, we get
\[=y\left[ 0-0+{{y}^{2}} \right]\]
\[=y\left[ {{y}^{2}} \right]\]
On solving, we get
$={{y}^{3}}$
Hence, determinant $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|={{y}^{3}}$
So, the correct answer is “Option A”.
Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. In determinant we can use both column and row elementary transformation. Also remember that finding roots of quadratic equation $a{{x}^{2}}+bx+c=0$, can be done by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ and if $\omega $ is complex cube root of infinity, then $1+\omega +{{\omega }^{2}}=0$ . Calculation should be done carefully while solving determinant problems.
Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Firstly, finding roots of quadratic equation ${{x}^{2}}+x+1=0$, by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ by comparing with $a{{x}^{2}}+bx+c=0$ , we get
a = 1, b = 1 c =1
so, $x=\dfrac{-1\pm \sqrt{{{1}^{2}}-4(1)(1)}}{2(1)}$
On solving, we get
$x=\dfrac{-1\pm i\sqrt{3}}{2}$
Let, $\alpha =\omega =\dfrac{-1+i\sqrt{3}}{2}$ and $\beta ={{\omega }^{2}}=\dfrac{-1-i\sqrt{3}}{2}$
Now, we have to evaluate $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|$
Or, $\left| \begin{matrix}
1+y & \omega & {{\omega }^{2}} \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}$ , we get
$=\left| \begin{matrix}
1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
We know that, $1+\omega +{{\omega }^{2}}=0$
So, $=\left| \begin{matrix}
y & y & y \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Taking y common from first row, we get
$=y\left| \begin{matrix}
1 & 1 & 1 \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Using elementary row operation ${{C}_{1}}\to {{C}_{1}}-{{C}_{2}}$ and elementary row operation ${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$, we get
\[=y\left| \begin{matrix}
0 & 0 & 1 \\
\omega -y-{{\omega }^{2}} & y+{{\omega }^{2}}-1 & 1 \\
{{\omega }^{2}}-1 & 1-y-\omega & y+\omega \\
\end{matrix} \right|\]
Expanding determinant along row ${{R}_{1}}$, we get
\[=y\left[ 0-0+1\left( \left( \omega -y-{{\omega }^{2}} \right)\cdot \left( 1-y-\omega \right)-(y+{{\omega }^{2}}-1)\cdot ({{\omega }^{2}}-1) \right) \right]\]
On simplifying by solving the brackets, we get
\[=y\left[ 0-0+{{y}^{2}} \right]\]
\[=y\left[ {{y}^{2}} \right]\]
On solving, we get
$={{y}^{3}}$
Hence, determinant $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|={{y}^{3}}$
So, the correct answer is “Option A”.
Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. In determinant we can use both column and row elementary transformation. Also remember that finding roots of quadratic equation $a{{x}^{2}}+bx+c=0$, can be done by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ and if $\omega $ is complex cube root of infinity, then $1+\omega +{{\omega }^{2}}=0$ . Calculation should be done carefully while solving determinant problems.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

