
Let $\alpha $ and $\beta $ be the roots of equation ${{x}^{2}}+x+1=0$ , then for $y\ne 0$ in R, $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|$ is equals to?
(a) ${{y}^{3}}$
(b) ${{y}^{3}}-1$
(c) $y({{y}^{2}}-1)$
(d) $y({{y}^{2}}-3)$
Answer
588.9k+ views
Hint: To solve this determinant, what we will do is firstly, we will find out the roots of the quadratic equation ${{x}^{2}}+x+1=0$. Then, we will use row and column elementary transformation and property of the cube root of unity which is $1+\omega +{{\omega }^{2}}=0$ to solve the determinant.
Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Firstly, finding roots of quadratic equation ${{x}^{2}}+x+1=0$, by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ by comparing with $a{{x}^{2}}+bx+c=0$ , we get
a = 1, b = 1 c =1
so, $x=\dfrac{-1\pm \sqrt{{{1}^{2}}-4(1)(1)}}{2(1)}$
On solving, we get
$x=\dfrac{-1\pm i\sqrt{3}}{2}$
Let, $\alpha =\omega =\dfrac{-1+i\sqrt{3}}{2}$ and $\beta ={{\omega }^{2}}=\dfrac{-1-i\sqrt{3}}{2}$
Now, we have to evaluate $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|$
Or, $\left| \begin{matrix}
1+y & \omega & {{\omega }^{2}} \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}$ , we get
$=\left| \begin{matrix}
1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
We know that, $1+\omega +{{\omega }^{2}}=0$
So, $=\left| \begin{matrix}
y & y & y \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Taking y common from first row, we get
$=y\left| \begin{matrix}
1 & 1 & 1 \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Using elementary row operation ${{C}_{1}}\to {{C}_{1}}-{{C}_{2}}$ and elementary row operation ${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$, we get
\[=y\left| \begin{matrix}
0 & 0 & 1 \\
\omega -y-{{\omega }^{2}} & y+{{\omega }^{2}}-1 & 1 \\
{{\omega }^{2}}-1 & 1-y-\omega & y+\omega \\
\end{matrix} \right|\]
Expanding determinant along row ${{R}_{1}}$, we get
\[=y\left[ 0-0+1\left( \left( \omega -y-{{\omega }^{2}} \right)\cdot \left( 1-y-\omega \right)-(y+{{\omega }^{2}}-1)\cdot ({{\omega }^{2}}-1) \right) \right]\]
On simplifying by solving the brackets, we get
\[=y\left[ 0-0+{{y}^{2}} \right]\]
\[=y\left[ {{y}^{2}} \right]\]
On solving, we get
$={{y}^{3}}$
Hence, determinant $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|={{y}^{3}}$
So, the correct answer is “Option A”.
Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. In determinant we can use both column and row elementary transformation. Also remember that finding roots of quadratic equation $a{{x}^{2}}+bx+c=0$, can be done by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ and if $\omega $ is complex cube root of infinity, then $1+\omega +{{\omega }^{2}}=0$ . Calculation should be done carefully while solving determinant problems.
Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Firstly, finding roots of quadratic equation ${{x}^{2}}+x+1=0$, by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ by comparing with $a{{x}^{2}}+bx+c=0$ , we get
a = 1, b = 1 c =1
so, $x=\dfrac{-1\pm \sqrt{{{1}^{2}}-4(1)(1)}}{2(1)}$
On solving, we get
$x=\dfrac{-1\pm i\sqrt{3}}{2}$
Let, $\alpha =\omega =\dfrac{-1+i\sqrt{3}}{2}$ and $\beta ={{\omega }^{2}}=\dfrac{-1-i\sqrt{3}}{2}$
Now, we have to evaluate $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|$
Or, $\left| \begin{matrix}
1+y & \omega & {{\omega }^{2}} \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}$ , we get
$=\left| \begin{matrix}
1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y & 1+\omega +{{\omega }^{2}}+y \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
We know that, $1+\omega +{{\omega }^{2}}=0$
So, $=\left| \begin{matrix}
y & y & y \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Taking y common from first row, we get
$=y\left| \begin{matrix}
1 & 1 & 1 \\
\omega & y+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & y+\omega \\
\end{matrix} \right|$
Using elementary row operation ${{C}_{1}}\to {{C}_{1}}-{{C}_{2}}$ and elementary row operation ${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$, we get
\[=y\left| \begin{matrix}
0 & 0 & 1 \\
\omega -y-{{\omega }^{2}} & y+{{\omega }^{2}}-1 & 1 \\
{{\omega }^{2}}-1 & 1-y-\omega & y+\omega \\
\end{matrix} \right|\]
Expanding determinant along row ${{R}_{1}}$, we get
\[=y\left[ 0-0+1\left( \left( \omega -y-{{\omega }^{2}} \right)\cdot \left( 1-y-\omega \right)-(y+{{\omega }^{2}}-1)\cdot ({{\omega }^{2}}-1) \right) \right]\]
On simplifying by solving the brackets, we get
\[=y\left[ 0-0+{{y}^{2}} \right]\]
\[=y\left[ {{y}^{2}} \right]\]
On solving, we get
$={{y}^{3}}$
Hence, determinant $\left| \begin{matrix}
1+y & \alpha & \beta \\
\alpha & y+\beta & 1 \\
\beta & 1 & y+\alpha \\
\end{matrix} \right|={{y}^{3}}$
So, the correct answer is “Option A”.
Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. In determinant we can use both column and row elementary transformation. Also remember that finding roots of quadratic equation $a{{x}^{2}}+bx+c=0$, can be done by quadratic formula, $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ and if $\omega $ is complex cube root of infinity, then $1+\omega +{{\omega }^{2}}=0$ . Calculation should be done carefully while solving determinant problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

