Answer
Verified
496.2k+ views
Hint: Rationalize $\left( \dfrac{az+b}{z+1} \right)$ after putting $z=x+iy$ then use the given condition.
We have given that $a,b,x\text{ and }y$ are real numbers with
$a-b=1\text{ }..............\left( i \right)$
$\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=y.............\left( ii \right)$
Where $z=x+iy$
As we know that any complex number $w=x+iy$ has two parts.$x$ is real part and $y$ is imaginary part and every complex number can be written in form of $x+iy.$
So, let us calculate
$\left( \dfrac{az+b}{z+1} \right)$ from equation (ii) by putting $z=x+iy$
$\begin{align}
& \Rightarrow \dfrac{a\left( x+iy \right)+b}{x+iy+1} \\
& \Rightarrow \dfrac{\left( ax+b \right)+iya}{\left( x+1 \right)+iy} \\
\end{align}$
Now, we need to rationalize the above expression to make denominator real; Hence multiplying with conjugate of denominator in whole fraction a following:
\[\begin{align}
& =\dfrac{\left( ax+b \right)iya}{\left( x+y \right)+iy}\times \left( \dfrac{\left( x+1 \right)-iy}{\left( x+1 \right)-iy} \right) \\
& =\dfrac{\left( \left( ax+b \right)\left( x+1 \right)-{{i}^{2}}ya \right)+iya\left( x+1 \right)-iy\left( ax+b \right)}{{{\left( x+1 \right)}^{2}}-{{i}^{2}}{{y}^{2}}-iy\left( x+1 \right)+iy\left( x+1 \right)} \\
& =\dfrac{\left( ax+1 \right)\left( x+1 \right)+ya+i\left( ya\left( x+1 \right)-y\left( ax+b \right) \right)}{{{\left( x+1 \right)}^{2}}+y} \\
& \left( {{i}^{2}}=-1 \right) \\
\end{align}\]
Now,
\[\begin{align}
& \operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{ay\left( x+1 \right)-y\left( ax+b \right)}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}} \\
& \operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{ayx+ya-ayx-yb}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}...........\left( iii \right) \\
\end{align}\]
From equation (ii) and (iii) we have
\[\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{y\left( a-b \right)}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}=y\]
Hence,
$\dfrac{a-b}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}=1$
As we have $a-b=1$ from equation (i)
Hence;
$\begin{align}
& {{\left( x+1 \right)}^{2}}+{{y}^{2}}=1 \\
& {{\left( x+1 \right)}^{2}}=1-{{y}^{2}} \\
& \left( x+1 \right)=\pm \sqrt{1-{{y}^{2}}}\text{ if }{{\text{N}}^{2}}=X\Rightarrow N=\pm \sqrt{X} \\
& x=-1\pm \sqrt{1-{{y}^{2}}} \\
\end{align}$
Hence, (b) and (d) are correct options.
Note: (i) Need not to calculate the real part $\left( \dfrac{az+b}{z+1} \right)$ for the requirement of solution.
(ii) Students can make mistakes with rationalization steps. One can multiply by $\left( x-1+iy \right)$. As students see three numbers in addition, usually questions have $a+ib$ form and need to multiply by $a-ib$ for rationalization. So, we need to place the $'-'$ sign between the real part and imaginary part.
Let,
\[\begin{align}
& z=\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n}} \right)+i\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+......{{b}_{n}} \right) \\
& \overline{z}=\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n}} \right)+i\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+......{{b}_{n}} \right) \\
\end{align}\]
We have given that $a,b,x\text{ and }y$ are real numbers with
$a-b=1\text{ }..............\left( i \right)$
$\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=y.............\left( ii \right)$
Where $z=x+iy$
As we know that any complex number $w=x+iy$ has two parts.$x$ is real part and $y$ is imaginary part and every complex number can be written in form of $x+iy.$
So, let us calculate
$\left( \dfrac{az+b}{z+1} \right)$ from equation (ii) by putting $z=x+iy$
$\begin{align}
& \Rightarrow \dfrac{a\left( x+iy \right)+b}{x+iy+1} \\
& \Rightarrow \dfrac{\left( ax+b \right)+iya}{\left( x+1 \right)+iy} \\
\end{align}$
Now, we need to rationalize the above expression to make denominator real; Hence multiplying with conjugate of denominator in whole fraction a following:
\[\begin{align}
& =\dfrac{\left( ax+b \right)iya}{\left( x+y \right)+iy}\times \left( \dfrac{\left( x+1 \right)-iy}{\left( x+1 \right)-iy} \right) \\
& =\dfrac{\left( \left( ax+b \right)\left( x+1 \right)-{{i}^{2}}ya \right)+iya\left( x+1 \right)-iy\left( ax+b \right)}{{{\left( x+1 \right)}^{2}}-{{i}^{2}}{{y}^{2}}-iy\left( x+1 \right)+iy\left( x+1 \right)} \\
& =\dfrac{\left( ax+1 \right)\left( x+1 \right)+ya+i\left( ya\left( x+1 \right)-y\left( ax+b \right) \right)}{{{\left( x+1 \right)}^{2}}+y} \\
& \left( {{i}^{2}}=-1 \right) \\
\end{align}\]
Now,
\[\begin{align}
& \operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{ay\left( x+1 \right)-y\left( ax+b \right)}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}} \\
& \operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{ayx+ya-ayx-yb}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}...........\left( iii \right) \\
\end{align}\]
From equation (ii) and (iii) we have
\[\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{y\left( a-b \right)}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}=y\]
Hence,
$\dfrac{a-b}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}=1$
As we have $a-b=1$ from equation (i)
Hence;
$\begin{align}
& {{\left( x+1 \right)}^{2}}+{{y}^{2}}=1 \\
& {{\left( x+1 \right)}^{2}}=1-{{y}^{2}} \\
& \left( x+1 \right)=\pm \sqrt{1-{{y}^{2}}}\text{ if }{{\text{N}}^{2}}=X\Rightarrow N=\pm \sqrt{X} \\
& x=-1\pm \sqrt{1-{{y}^{2}}} \\
\end{align}$
Hence, (b) and (d) are correct options.
Note: (i) Need not to calculate the real part $\left( \dfrac{az+b}{z+1} \right)$ for the requirement of solution.
(ii) Students can make mistakes with rationalization steps. One can multiply by $\left( x-1+iy \right)$. As students see three numbers in addition, usually questions have $a+ib$ form and need to multiply by $a-ib$ for rationalization. So, we need to place the $'-'$ sign between the real part and imaginary part.
Let,
\[\begin{align}
& z=\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n}} \right)+i\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+......{{b}_{n}} \right) \\
& \overline{z}=\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n}} \right)+i\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+......{{b}_{n}} \right) \\
\end{align}\]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it