# Let $a,b,x\text{ and }y$ be real numbers such that $a-b=1\text{ and }y\ne 0.$ If the complex number $z=x+iy$ satisfies $\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=y,$ then when of the following is (are) possible value(s) of $x$ ?

(a) $1-\sqrt{1+{{y}^{2}}}$

(b) $-1+\sqrt{1-{{y}^{2}}}$

(c) $1+\sqrt{1+{{y}^{2}}}$

(d) $-1-\sqrt{1-{{y}^{2}}}$

Last updated date: 18th Mar 2023

•

Total views: 307.2k

•

Views today: 8.87k

Answer

Verified

307.2k+ views

Hint: Rationalize $\left( \dfrac{az+b}{z+1} \right)$ after putting $z=x+iy$ then use the given condition.

We have given that $a,b,x\text{ and }y$ are real numbers with

$a-b=1\text{ }..............\left( i \right)$

$\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=y.............\left( ii \right)$

Where $z=x+iy$

As we know that any complex number $w=x+iy$ has two parts.$x$ is real part and $y$ is imaginary part and every complex number can be written in form of $x+iy.$

So, let us calculate

$\left( \dfrac{az+b}{z+1} \right)$ from equation (ii) by putting $z=x+iy$

$\begin{align}

& \Rightarrow \dfrac{a\left( x+iy \right)+b}{x+iy+1} \\

& \Rightarrow \dfrac{\left( ax+b \right)+iya}{\left( x+1 \right)+iy} \\

\end{align}$

Now, we need to rationalize the above expression to make denominator real; Hence multiplying with conjugate of denominator in whole fraction a following:

\[\begin{align}

& =\dfrac{\left( ax+b \right)iya}{\left( x+y \right)+iy}\times \left( \dfrac{\left( x+1 \right)-iy}{\left( x+1 \right)-iy} \right) \\

& =\dfrac{\left( \left( ax+b \right)\left( x+1 \right)-{{i}^{2}}ya \right)+iya\left( x+1 \right)-iy\left( ax+b \right)}{{{\left( x+1 \right)}^{2}}-{{i}^{2}}{{y}^{2}}-iy\left( x+1 \right)+iy\left( x+1 \right)} \\

& =\dfrac{\left( ax+1 \right)\left( x+1 \right)+ya+i\left( ya\left( x+1 \right)-y\left( ax+b \right) \right)}{{{\left( x+1 \right)}^{2}}+y} \\

& \left( {{i}^{2}}=-1 \right) \\

\end{align}\]

Now,

\[\begin{align}

& \operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{ay\left( x+1 \right)-y\left( ax+b \right)}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}} \\

& \operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{ayx+ya-ayx-yb}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}...........\left( iii \right) \\

\end{align}\]

From equation (ii) and (iii) we have

\[\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{y\left( a-b \right)}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}=y\]

Hence,

$\dfrac{a-b}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}=1$

As we have $a-b=1$ from equation (i)

Hence;

$\begin{align}

& {{\left( x+1 \right)}^{2}}+{{y}^{2}}=1 \\

& {{\left( x+1 \right)}^{2}}=1-{{y}^{2}} \\

& \left( x+1 \right)=\pm \sqrt{1-{{y}^{2}}}\text{ if }{{\text{N}}^{2}}=X\Rightarrow N=\pm \sqrt{X} \\

& x=-1\pm \sqrt{1-{{y}^{2}}} \\

\end{align}$

Hence, (b) and (d) are correct options.

Note: (i) Need not to calculate the real part $\left( \dfrac{az+b}{z+1} \right)$ for the requirement of solution.

(ii) Students can make mistakes with rationalization steps. One can multiply by $\left( x-1+iy \right)$. As students see three numbers in addition, usually questions have $a+ib$ form and need to multiply by $a-ib$ for rationalization. So, we need to place the $'-'$ sign between the real part and imaginary part.

Let,

\[\begin{align}

& z=\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n}} \right)+i\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+......{{b}_{n}} \right) \\

& \overline{z}=\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n}} \right)+i\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+......{{b}_{n}} \right) \\

\end{align}\]

We have given that $a,b,x\text{ and }y$ are real numbers with

$a-b=1\text{ }..............\left( i \right)$

$\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=y.............\left( ii \right)$

Where $z=x+iy$

As we know that any complex number $w=x+iy$ has two parts.$x$ is real part and $y$ is imaginary part and every complex number can be written in form of $x+iy.$

So, let us calculate

$\left( \dfrac{az+b}{z+1} \right)$ from equation (ii) by putting $z=x+iy$

$\begin{align}

& \Rightarrow \dfrac{a\left( x+iy \right)+b}{x+iy+1} \\

& \Rightarrow \dfrac{\left( ax+b \right)+iya}{\left( x+1 \right)+iy} \\

\end{align}$

Now, we need to rationalize the above expression to make denominator real; Hence multiplying with conjugate of denominator in whole fraction a following:

\[\begin{align}

& =\dfrac{\left( ax+b \right)iya}{\left( x+y \right)+iy}\times \left( \dfrac{\left( x+1 \right)-iy}{\left( x+1 \right)-iy} \right) \\

& =\dfrac{\left( \left( ax+b \right)\left( x+1 \right)-{{i}^{2}}ya \right)+iya\left( x+1 \right)-iy\left( ax+b \right)}{{{\left( x+1 \right)}^{2}}-{{i}^{2}}{{y}^{2}}-iy\left( x+1 \right)+iy\left( x+1 \right)} \\

& =\dfrac{\left( ax+1 \right)\left( x+1 \right)+ya+i\left( ya\left( x+1 \right)-y\left( ax+b \right) \right)}{{{\left( x+1 \right)}^{2}}+y} \\

& \left( {{i}^{2}}=-1 \right) \\

\end{align}\]

Now,

\[\begin{align}

& \operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{ay\left( x+1 \right)-y\left( ax+b \right)}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}} \\

& \operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{ayx+ya-ayx-yb}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}...........\left( iii \right) \\

\end{align}\]

From equation (ii) and (iii) we have

\[\operatorname{Im}\left( \dfrac{az+b}{z+1} \right)=\dfrac{y\left( a-b \right)}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}=y\]

Hence,

$\dfrac{a-b}{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}=1$

As we have $a-b=1$ from equation (i)

Hence;

$\begin{align}

& {{\left( x+1 \right)}^{2}}+{{y}^{2}}=1 \\

& {{\left( x+1 \right)}^{2}}=1-{{y}^{2}} \\

& \left( x+1 \right)=\pm \sqrt{1-{{y}^{2}}}\text{ if }{{\text{N}}^{2}}=X\Rightarrow N=\pm \sqrt{X} \\

& x=-1\pm \sqrt{1-{{y}^{2}}} \\

\end{align}$

Hence, (b) and (d) are correct options.

Note: (i) Need not to calculate the real part $\left( \dfrac{az+b}{z+1} \right)$ for the requirement of solution.

(ii) Students can make mistakes with rationalization steps. One can multiply by $\left( x-1+iy \right)$. As students see three numbers in addition, usually questions have $a+ib$ form and need to multiply by $a-ib$ for rationalization. So, we need to place the $'-'$ sign between the real part and imaginary part.

Let,

\[\begin{align}

& z=\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n}} \right)+i\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+......{{b}_{n}} \right) \\

& \overline{z}=\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n}} \right)+i\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+......{{b}_{n}} \right) \\

\end{align}\]

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE