
Let ABCD is parallelogram such that \[\overline {AB} = \overrightarrow q ,\overline {AD} = \overrightarrow p {\text{ and }}\angle BAD\] be an acute angle. If $\overrightarrow r $ is the vector coincides with the altitude directed from the vertex \[B\] to the side $AD$, then $\overrightarrow r $ is given by:
\[
{\text{(A) }}\overrightarrow r = 3\overrightarrow q - \dfrac{{3(\overrightarrow p .\overrightarrow q )}}{{\overrightarrow p .\overrightarrow p }}\overrightarrow p \\
{\text{(B) }}\overrightarrow r = - \overrightarrow q + \left( {\dfrac{{\overrightarrow p .\overrightarrow q }}{{\overrightarrow p .\overrightarrow p }}} \right)\overrightarrow p \\
{\text{(C) }}\overrightarrow r = \overrightarrow q - \left( {\dfrac{{\overrightarrow p .\overrightarrow q }}{{\overrightarrow p .\overrightarrow p }}} \right)\overrightarrow p \\
{\text{(D) }}\overrightarrow r = - 3\overrightarrow q + \dfrac{{3(\overrightarrow p .\overrightarrow q )}}{{\overrightarrow p .\overrightarrow p }}\overrightarrow p \\
\]
Answer
588k+ views
Hint:This problem is related to vector geometry. It should be noted here that a dot product of two vectors is a scalar quantity (\[\overrightarrow A .\overrightarrow B = AB\cos \theta ,\] where $\theta $ is the angle between them) and if the vectors are perpendicular to each other their dot product is zero because the value of $\cos {90^ \circ } = 0$. We will use this property of vector products to solve the problem.
Complete step-by-step answer:
Firstly, draw a parallelogram ABCD in such a way that \[\overline {AB} = \overrightarrow q ,\overline {AD} = \overrightarrow p {\text{ and }}\angle BAD\] should be an acute angle. See below,
Now, in the diagram, draw a line originating from vertex \[B\] to the side $AD$ in such a way that it should be perpendicular to side $AD$. This way $\Delta AEB$ will be a right angle triangle.
We know that, vector$\overrightarrow r $can be written in the form of vector $\overrightarrow q $ and vector $\overrightarrow p $. Now, from the diagram above, it is known that the direction of vector $\overrightarrow r $is opposite to the direction of vector$\overrightarrow q $. Hence, when we write the vector $\overrightarrow r $ in terms of vector $\overrightarrow q $, we shall have to put a negative sign in front of the vector $\overrightarrow q $.
Now, vector $\overrightarrow p $represents the side $AD$, so assume that $\alpha \overrightarrow p $represents the side $AE$ in $\Delta AEB$. Therefore, now vector $\overrightarrow r $can be written in the form of vector $\overrightarrow q $ and vector $\overrightarrow p $ in the following way,
$\overrightarrow r = - \overrightarrow q + \alpha \overrightarrow p {\text{ }}................(1)$
Now, we know that the dot product to two perpendicular vectors is zero. In this diagram, vector$\overrightarrow r $and vector$\overrightarrow p $ are perpendicular to each other.
Therefore,
$\overrightarrow r .\overrightarrow p = 0$
Putting the value of vector$\overrightarrow r $ from eq. (1) in the above expression, we will get
\[
\overrightarrow r .\overrightarrow p = 0 \\
\Rightarrow ( - \overrightarrow q + \alpha \overrightarrow p ).\overrightarrow p = 0 \\
\Rightarrow - \overrightarrow q .\overrightarrow p + \alpha \overrightarrow p .\overrightarrow p = 0 \\
\Rightarrow \alpha = \dfrac{{\overrightarrow q .\overrightarrow p }}{{\overrightarrow p .\overrightarrow p }} \\
\]
Now, putting this value of $\alpha $, we will get the value of vector$\overrightarrow r $as
$\overrightarrow r = - \overrightarrow q + \dfrac{{\overrightarrow q .\overrightarrow p }}{{\overrightarrow p .\overrightarrow p }}\overrightarrow p $
So, the correct answer is “Option B”.
Note:In these types of problems, you should take care while drawing the diagram and putting the vector’s direction. Though, it is not given in the problem that the vector $\overrightarrow r $is perpendicular to$\overrightarrow p $but we have assumed that they are perpendicular to each other so that property of dot product of vectors can be utilised.
Complete step-by-step answer:
Firstly, draw a parallelogram ABCD in such a way that \[\overline {AB} = \overrightarrow q ,\overline {AD} = \overrightarrow p {\text{ and }}\angle BAD\] should be an acute angle. See below,
Now, in the diagram, draw a line originating from vertex \[B\] to the side $AD$ in such a way that it should be perpendicular to side $AD$. This way $\Delta AEB$ will be a right angle triangle.
We know that, vector$\overrightarrow r $can be written in the form of vector $\overrightarrow q $ and vector $\overrightarrow p $. Now, from the diagram above, it is known that the direction of vector $\overrightarrow r $is opposite to the direction of vector$\overrightarrow q $. Hence, when we write the vector $\overrightarrow r $ in terms of vector $\overrightarrow q $, we shall have to put a negative sign in front of the vector $\overrightarrow q $.
Now, vector $\overrightarrow p $represents the side $AD$, so assume that $\alpha \overrightarrow p $represents the side $AE$ in $\Delta AEB$. Therefore, now vector $\overrightarrow r $can be written in the form of vector $\overrightarrow q $ and vector $\overrightarrow p $ in the following way,
$\overrightarrow r = - \overrightarrow q + \alpha \overrightarrow p {\text{ }}................(1)$
Now, we know that the dot product to two perpendicular vectors is zero. In this diagram, vector$\overrightarrow r $and vector$\overrightarrow p $ are perpendicular to each other.
Therefore,
$\overrightarrow r .\overrightarrow p = 0$
Putting the value of vector$\overrightarrow r $ from eq. (1) in the above expression, we will get
\[
\overrightarrow r .\overrightarrow p = 0 \\
\Rightarrow ( - \overrightarrow q + \alpha \overrightarrow p ).\overrightarrow p = 0 \\
\Rightarrow - \overrightarrow q .\overrightarrow p + \alpha \overrightarrow p .\overrightarrow p = 0 \\
\Rightarrow \alpha = \dfrac{{\overrightarrow q .\overrightarrow p }}{{\overrightarrow p .\overrightarrow p }} \\
\]
Now, putting this value of $\alpha $, we will get the value of vector$\overrightarrow r $as
$\overrightarrow r = - \overrightarrow q + \dfrac{{\overrightarrow q .\overrightarrow p }}{{\overrightarrow p .\overrightarrow p }}\overrightarrow p $
So, the correct answer is “Option B”.
Note:In these types of problems, you should take care while drawing the diagram and putting the vector’s direction. Though, it is not given in the problem that the vector $\overrightarrow r $is perpendicular to$\overrightarrow p $but we have assumed that they are perpendicular to each other so that property of dot product of vectors can be utilised.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

