
Let \[a,b \in R\]and $f:R \to R$ be defined by $f(x) = a\cos \left( {\left| {{x^3} - x} \right|} \right) + b\left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$. Then $f$ is
(A) Differentiate at $x = 0$ if $a = 0$ and $b = 1$
(B) Differentiate at $x = 1$ if $a = 1$ and $b = 0$
(C) Not Differentiate at $x = 0$ if $a = 1$ and $b = 0$
(D) Not Differentiate at $x = 1$ if $a = 1$ and $b = 1$
Answer
574.2k+ views
Hint: To solve this problem we find the right and left hand derivatives of a given function at $x = 0$ and $x = 1$ by putting value of $a,b$ as given in options.
The left hand derivative of $f(x)$ at $x = a$ is $f{'}({a^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(a - h) - f(a)}}{{ - h}}$
And right hand derivative of $f(x)$ at $x = a$ is $f{'}({a^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(a + h) - f(a)}}{h}$
Complete step by step answer:
Given function: $f(x) = a\cos \left( {\left| {{x^3} - x} \right|} \right) + b\left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now we go through first option:
1. Differentiate at $x = 0$ if $a = 0$ and $b = 1$
Now we put value of a and b in given function
From this we can say $f(x) = \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now find derivative:
Left hand derivative at $x = 0$
$f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| { - h} \right|\sin \left( {\left| { - {h^3} - h} \right|} \right) - 0}}{{ - h}}$
$\because f(0) = 0 \times \sin 0 = 0$
$\because \left| { - h} \right| = h$
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\sin \left( {\left| { - {h^3} - h} \right|} \right)}}{{ - h}}$
Now $f{'}({0^ - }) = \dfrac{{\sin \left( 0 \right)}}{{ - 1}}$
$\because \sin 0 = 0$
So $f{'}({0^ - }) = 0$
So left hand derivative at $x = 0$ is $0$
Similarly we find left hand derivative
For right hand derivative of $f(x)$ at $x = 0$ is $f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h}$
$ \Rightarrow \;$
$ \Rightarrow f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| h \right|\sin \left( {\left| {{h^3} + h} \right|} \right) - 0}}{h}$
Now we know $\left| h \right| = h$
And after putting limit value we get
$ \Rightarrow f{'}({0^ + }) = \sin 0$
$ \Rightarrow f{'}({0^ + }) = 0$
So left hand derivative and right hand derivative are equal
$f{'}({0^ + }) = f{'}({0^ - }) = 0$ so function is derivable at $x = 0$
2. Differentiate at $x = 1$ if $a = 1$ and $b = 0$
So put value of $a,b$ we get $f(x) = 1 \times \cos \left( {\left| {{x^3} - x} \right|} \right) + 0 \times \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$
So
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{ - h}}$
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(1 - h)}^3} - (1 - h)} \right|} \right) - \cos (1 - 1)}}{{ - h}}$
Now we put limit
So $f{'}({1^ - }) = \dfrac{{\cos \left( {1 - 1} \right) - \cos (0)}}{{ - 1}}$ and $\cos 0 = 1$
So $f{'}({1^ - }) = \dfrac{{1 - 1}}{1} = 0$
Similarly right hand limit $f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{h}$
$f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(1 + h)}^3} - (1 + h)} \right|} \right) - \cos (1 - 1)}}{h}$
Now putting limit value
$f{'}({1^ + }) = \dfrac{{\cos \left( {1 - 1} \right) - \cos (0)}}{1}$
So $f{'}({1^ + }) = \dfrac{{1 - 1}}{1} = 0$
So the left hand derivative is equal to right hand derivative
So we can say function is Differentiate at $x = 1$ if $a = 1$ and $b = 0$
So answer is option A and B is correct .
3. Not Differentiate at $x = 0$ if $a = 1$ and $b = 0$
After putting value of $a,b$
$f(x) = 1 \times \cos \left( {\left| {{x^3} - x} \right|} \right) + 0 \times \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$
Now we have to find left and right hand derivative
Right hand derivative $f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h}$
$f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(0 + h)}^3} - (0 + h)} \right|} \right) - \cos (0)}}{h}$
$f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {({h^3} - h)} \right|} \right) - \cos (0)}}{h}$
Now if we put limit we see that numerator is exact equal to zero $\because \cos 0 - \cos 0 = 0$
So overall limit is equal to zero it does not matter what is in numerator
So $f{'}({0^ + }) = 0$
Now left hand derivative $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
$f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(0 - h)}^3} - (0 - h)} \right|} \right) - \cos (0)}}{{ - h}}$
Now we put limit
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {( - {h^3} + h)} \right|} \right) - \cos (0)}}{{ - h}}$
Now if we put limit we see that numerator is exact equal to zero $\because \cos 0 - \cos 0 = 0$
So overall limit is equal to zero it does not matter what is in numerator
So $f{'}({0^ - }) = 0$
So from here we see that left hand and right hand derivatives are equal so option C is wrong statement.
4. Not Differentiate at $x = 1$ if $a = 1$ and $b = 1$
Now put value of $a,b$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right) + \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now we have to find that given above function is derivable or not at $x = 1$
As we see earlier that $f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$ is differentiable at $x = 1$
(refer prove of option B)
Now we prove that $f(x) = \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$ is derivable or not at $x = 1$
So left hand derivative
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{ - h}}$
So $f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| {1 - h} \right|\sin \left( {\left| {{{(1 - h)}^3} - (1 - h)} \right|} \right) - \sin 2}}{{ - h}}$
If we put limit
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( 0 \right) - \sin 2}}{0}$
This goes $\infty $ because denominator is zero
$f{'}({1^ - }) = \infty $
Now right hand derivative $f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{h}$
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| {1 + h} \right|\sin \left( {\left| {{{(1 + h)}^3} - (1 + h)} \right|} \right) - \sin 2}}{h}$
Now we put limit
$f{'}({1^ - }) = \dfrac{{\sin 0 - \sin 2}}{0}$
As we it goes to $\infty $ because numerator is exact zero
So $f{'}({1^ - }) = \infty $
So given function at $x = 1$ and $a = b = 1$ is derivable
So option D is wrong
Therefore, only the option (A) and (B) are correct.
Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{{'}}s no choice other than checking for each option one by one.
The left hand derivative of $f(x)$ at $x = a$ is $f{'}({a^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(a - h) - f(a)}}{{ - h}}$
And right hand derivative of $f(x)$ at $x = a$ is $f{'}({a^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(a + h) - f(a)}}{h}$
Complete step by step answer:
Given function: $f(x) = a\cos \left( {\left| {{x^3} - x} \right|} \right) + b\left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now we go through first option:
1. Differentiate at $x = 0$ if $a = 0$ and $b = 1$
Now we put value of a and b in given function
From this we can say $f(x) = \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now find derivative:
Left hand derivative at $x = 0$
$f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| { - h} \right|\sin \left( {\left| { - {h^3} - h} \right|} \right) - 0}}{{ - h}}$
$\because f(0) = 0 \times \sin 0 = 0$
$\because \left| { - h} \right| = h$
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\sin \left( {\left| { - {h^3} - h} \right|} \right)}}{{ - h}}$
Now $f{'}({0^ - }) = \dfrac{{\sin \left( 0 \right)}}{{ - 1}}$
$\because \sin 0 = 0$
So $f{'}({0^ - }) = 0$
So left hand derivative at $x = 0$ is $0$
Similarly we find left hand derivative
For right hand derivative of $f(x)$ at $x = 0$ is $f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h}$
$ \Rightarrow \;$
$ \Rightarrow f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| h \right|\sin \left( {\left| {{h^3} + h} \right|} \right) - 0}}{h}$
Now we know $\left| h \right| = h$
And after putting limit value we get
$ \Rightarrow f{'}({0^ + }) = \sin 0$
$ \Rightarrow f{'}({0^ + }) = 0$
So left hand derivative and right hand derivative are equal
$f{'}({0^ + }) = f{'}({0^ - }) = 0$ so function is derivable at $x = 0$
2. Differentiate at $x = 1$ if $a = 1$ and $b = 0$
So put value of $a,b$ we get $f(x) = 1 \times \cos \left( {\left| {{x^3} - x} \right|} \right) + 0 \times \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$
So
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{ - h}}$
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(1 - h)}^3} - (1 - h)} \right|} \right) - \cos (1 - 1)}}{{ - h}}$
Now we put limit
So $f{'}({1^ - }) = \dfrac{{\cos \left( {1 - 1} \right) - \cos (0)}}{{ - 1}}$ and $\cos 0 = 1$
So $f{'}({1^ - }) = \dfrac{{1 - 1}}{1} = 0$
Similarly right hand limit $f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{h}$
$f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(1 + h)}^3} - (1 + h)} \right|} \right) - \cos (1 - 1)}}{h}$
Now putting limit value
$f{'}({1^ + }) = \dfrac{{\cos \left( {1 - 1} \right) - \cos (0)}}{1}$
So $f{'}({1^ + }) = \dfrac{{1 - 1}}{1} = 0$
So the left hand derivative is equal to right hand derivative
So we can say function is Differentiate at $x = 1$ if $a = 1$ and $b = 0$
So answer is option A and B is correct .
3. Not Differentiate at $x = 0$ if $a = 1$ and $b = 0$
After putting value of $a,b$
$f(x) = 1 \times \cos \left( {\left| {{x^3} - x} \right|} \right) + 0 \times \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$
Now we have to find left and right hand derivative
Right hand derivative $f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h}$
$f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(0 + h)}^3} - (0 + h)} \right|} \right) - \cos (0)}}{h}$
$f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {({h^3} - h)} \right|} \right) - \cos (0)}}{h}$
Now if we put limit we see that numerator is exact equal to zero $\because \cos 0 - \cos 0 = 0$
So overall limit is equal to zero it does not matter what is in numerator
So $f{'}({0^ + }) = 0$
Now left hand derivative $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
$f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(0 - h)}^3} - (0 - h)} \right|} \right) - \cos (0)}}{{ - h}}$
Now we put limit
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {( - {h^3} + h)} \right|} \right) - \cos (0)}}{{ - h}}$
Now if we put limit we see that numerator is exact equal to zero $\because \cos 0 - \cos 0 = 0$
So overall limit is equal to zero it does not matter what is in numerator
So $f{'}({0^ - }) = 0$
So from here we see that left hand and right hand derivatives are equal so option C is wrong statement.
4. Not Differentiate at $x = 1$ if $a = 1$ and $b = 1$
Now put value of $a,b$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right) + \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now we have to find that given above function is derivable or not at $x = 1$
As we see earlier that $f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$ is differentiable at $x = 1$
(refer prove of option B)
Now we prove that $f(x) = \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$ is derivable or not at $x = 1$
So left hand derivative
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{ - h}}$
So $f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| {1 - h} \right|\sin \left( {\left| {{{(1 - h)}^3} - (1 - h)} \right|} \right) - \sin 2}}{{ - h}}$
If we put limit
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( 0 \right) - \sin 2}}{0}$
This goes $\infty $ because denominator is zero
$f{'}({1^ - }) = \infty $
Now right hand derivative $f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{h}$
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| {1 + h} \right|\sin \left( {\left| {{{(1 + h)}^3} - (1 + h)} \right|} \right) - \sin 2}}{h}$
Now we put limit
$f{'}({1^ - }) = \dfrac{{\sin 0 - \sin 2}}{0}$
As we it goes to $\infty $ because numerator is exact zero
So $f{'}({1^ - }) = \infty $
So given function at $x = 1$ and $a = b = 1$ is derivable
So option D is wrong
Therefore, only the option (A) and (B) are correct.
Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{{'}}s no choice other than checking for each option one by one.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

