
Let \[a,b \in R\]and $f:R \to R$ be defined by $f(x) = a\cos \left( {\left| {{x^3} - x} \right|} \right) + b\left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$. Then $f$ is
(A) Differentiate at $x = 0$ if $a = 0$ and $b = 1$
(B) Differentiate at $x = 1$ if $a = 1$ and $b = 0$
(C) Not Differentiate at $x = 0$ if $a = 1$ and $b = 0$
(D) Not Differentiate at $x = 1$ if $a = 1$ and $b = 1$
Answer
508.8k+ views
Hint: To solve this problem we find the right and left hand derivatives of a given function at $x = 0$ and $x = 1$ by putting value of $a,b$ as given in options.
The left hand derivative of $f(x)$ at $x = a$ is $f{'}({a^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(a - h) - f(a)}}{{ - h}}$
And right hand derivative of $f(x)$ at $x = a$ is $f{'}({a^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(a + h) - f(a)}}{h}$
Complete step by step answer:
Given function: $f(x) = a\cos \left( {\left| {{x^3} - x} \right|} \right) + b\left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now we go through first option:
1. Differentiate at $x = 0$ if $a = 0$ and $b = 1$
Now we put value of a and b in given function
From this we can say $f(x) = \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now find derivative:
Left hand derivative at $x = 0$
$f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| { - h} \right|\sin \left( {\left| { - {h^3} - h} \right|} \right) - 0}}{{ - h}}$
$\because f(0) = 0 \times \sin 0 = 0$
$\because \left| { - h} \right| = h$
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\sin \left( {\left| { - {h^3} - h} \right|} \right)}}{{ - h}}$
Now $f{'}({0^ - }) = \dfrac{{\sin \left( 0 \right)}}{{ - 1}}$
$\because \sin 0 = 0$
So $f{'}({0^ - }) = 0$
So left hand derivative at $x = 0$ is $0$
Similarly we find left hand derivative
For right hand derivative of $f(x)$ at $x = 0$ is $f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h}$
$ \Rightarrow \;$
$ \Rightarrow f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| h \right|\sin \left( {\left| {{h^3} + h} \right|} \right) - 0}}{h}$
Now we know $\left| h \right| = h$
And after putting limit value we get
$ \Rightarrow f{'}({0^ + }) = \sin 0$
$ \Rightarrow f{'}({0^ + }) = 0$
So left hand derivative and right hand derivative are equal
$f{'}({0^ + }) = f{'}({0^ - }) = 0$ so function is derivable at $x = 0$
2. Differentiate at $x = 1$ if $a = 1$ and $b = 0$
So put value of $a,b$ we get $f(x) = 1 \times \cos \left( {\left| {{x^3} - x} \right|} \right) + 0 \times \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$
So
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{ - h}}$
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(1 - h)}^3} - (1 - h)} \right|} \right) - \cos (1 - 1)}}{{ - h}}$
Now we put limit
So $f{'}({1^ - }) = \dfrac{{\cos \left( {1 - 1} \right) - \cos (0)}}{{ - 1}}$ and $\cos 0 = 1$
So $f{'}({1^ - }) = \dfrac{{1 - 1}}{1} = 0$
Similarly right hand limit $f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{h}$
$f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(1 + h)}^3} - (1 + h)} \right|} \right) - \cos (1 - 1)}}{h}$
Now putting limit value
$f{'}({1^ + }) = \dfrac{{\cos \left( {1 - 1} \right) - \cos (0)}}{1}$
So $f{'}({1^ + }) = \dfrac{{1 - 1}}{1} = 0$
So the left hand derivative is equal to right hand derivative
So we can say function is Differentiate at $x = 1$ if $a = 1$ and $b = 0$
So answer is option A and B is correct .
3. Not Differentiate at $x = 0$ if $a = 1$ and $b = 0$
After putting value of $a,b$
$f(x) = 1 \times \cos \left( {\left| {{x^3} - x} \right|} \right) + 0 \times \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$
Now we have to find left and right hand derivative
Right hand derivative $f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h}$
$f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(0 + h)}^3} - (0 + h)} \right|} \right) - \cos (0)}}{h}$
$f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {({h^3} - h)} \right|} \right) - \cos (0)}}{h}$
Now if we put limit we see that numerator is exact equal to zero $\because \cos 0 - \cos 0 = 0$
So overall limit is equal to zero it does not matter what is in numerator
So $f{'}({0^ + }) = 0$
Now left hand derivative $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
$f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(0 - h)}^3} - (0 - h)} \right|} \right) - \cos (0)}}{{ - h}}$
Now we put limit
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {( - {h^3} + h)} \right|} \right) - \cos (0)}}{{ - h}}$
Now if we put limit we see that numerator is exact equal to zero $\because \cos 0 - \cos 0 = 0$
So overall limit is equal to zero it does not matter what is in numerator
So $f{'}({0^ - }) = 0$
So from here we see that left hand and right hand derivatives are equal so option C is wrong statement.
4. Not Differentiate at $x = 1$ if $a = 1$ and $b = 1$
Now put value of $a,b$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right) + \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now we have to find that given above function is derivable or not at $x = 1$
As we see earlier that $f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$ is differentiable at $x = 1$
(refer prove of option B)
Now we prove that $f(x) = \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$ is derivable or not at $x = 1$
So left hand derivative
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{ - h}}$
So $f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| {1 - h} \right|\sin \left( {\left| {{{(1 - h)}^3} - (1 - h)} \right|} \right) - \sin 2}}{{ - h}}$
If we put limit
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( 0 \right) - \sin 2}}{0}$
This goes $\infty $ because denominator is zero
$f{'}({1^ - }) = \infty $
Now right hand derivative $f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{h}$
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| {1 + h} \right|\sin \left( {\left| {{{(1 + h)}^3} - (1 + h)} \right|} \right) - \sin 2}}{h}$
Now we put limit
$f{'}({1^ - }) = \dfrac{{\sin 0 - \sin 2}}{0}$
As we it goes to $\infty $ because numerator is exact zero
So $f{'}({1^ - }) = \infty $
So given function at $x = 1$ and $a = b = 1$ is derivable
So option D is wrong
Therefore, only the option (A) and (B) are correct.
Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{{'}}s no choice other than checking for each option one by one.
The left hand derivative of $f(x)$ at $x = a$ is $f{'}({a^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(a - h) - f(a)}}{{ - h}}$
And right hand derivative of $f(x)$ at $x = a$ is $f{'}({a^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(a + h) - f(a)}}{h}$
Complete step by step answer:
Given function: $f(x) = a\cos \left( {\left| {{x^3} - x} \right|} \right) + b\left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now we go through first option:
1. Differentiate at $x = 0$ if $a = 0$ and $b = 1$
Now we put value of a and b in given function
From this we can say $f(x) = \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now find derivative:
Left hand derivative at $x = 0$
$f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| { - h} \right|\sin \left( {\left| { - {h^3} - h} \right|} \right) - 0}}{{ - h}}$
$\because f(0) = 0 \times \sin 0 = 0$
$\because \left| { - h} \right| = h$
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\sin \left( {\left| { - {h^3} - h} \right|} \right)}}{{ - h}}$
Now $f{'}({0^ - }) = \dfrac{{\sin \left( 0 \right)}}{{ - 1}}$
$\because \sin 0 = 0$
So $f{'}({0^ - }) = 0$
So left hand derivative at $x = 0$ is $0$
Similarly we find left hand derivative
For right hand derivative of $f(x)$ at $x = 0$ is $f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h}$
$ \Rightarrow \;$
$ \Rightarrow f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| h \right|\sin \left( {\left| {{h^3} + h} \right|} \right) - 0}}{h}$
Now we know $\left| h \right| = h$
And after putting limit value we get
$ \Rightarrow f{'}({0^ + }) = \sin 0$
$ \Rightarrow f{'}({0^ + }) = 0$
So left hand derivative and right hand derivative are equal
$f{'}({0^ + }) = f{'}({0^ - }) = 0$ so function is derivable at $x = 0$
2. Differentiate at $x = 1$ if $a = 1$ and $b = 0$
So put value of $a,b$ we get $f(x) = 1 \times \cos \left( {\left| {{x^3} - x} \right|} \right) + 0 \times \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$
So
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{ - h}}$
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(1 - h)}^3} - (1 - h)} \right|} \right) - \cos (1 - 1)}}{{ - h}}$
Now we put limit
So $f{'}({1^ - }) = \dfrac{{\cos \left( {1 - 1} \right) - \cos (0)}}{{ - 1}}$ and $\cos 0 = 1$
So $f{'}({1^ - }) = \dfrac{{1 - 1}}{1} = 0$
Similarly right hand limit $f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{h}$
$f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(1 + h)}^3} - (1 + h)} \right|} \right) - \cos (1 - 1)}}{h}$
Now putting limit value
$f{'}({1^ + }) = \dfrac{{\cos \left( {1 - 1} \right) - \cos (0)}}{1}$
So $f{'}({1^ + }) = \dfrac{{1 - 1}}{1} = 0$
So the left hand derivative is equal to right hand derivative
So we can say function is Differentiate at $x = 1$ if $a = 1$ and $b = 0$
So answer is option A and B is correct .
3. Not Differentiate at $x = 0$ if $a = 1$ and $b = 0$
After putting value of $a,b$
$f(x) = 1 \times \cos \left( {\left| {{x^3} - x} \right|} \right) + 0 \times \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$
Now we have to find left and right hand derivative
Right hand derivative $f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h}$
$f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(0 + h)}^3} - (0 + h)} \right|} \right) - \cos (0)}}{h}$
$f{'}({0^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {({h^3} - h)} \right|} \right) - \cos (0)}}{h}$
Now if we put limit we see that numerator is exact equal to zero $\because \cos 0 - \cos 0 = 0$
So overall limit is equal to zero it does not matter what is in numerator
So $f{'}({0^ + }) = 0$
Now left hand derivative $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 - h) - f(0)}}{{ - h}}$
$f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {{{(0 - h)}^3} - (0 - h)} \right|} \right) - \cos (0)}}{{ - h}}$
Now we put limit
So $f{'}({0^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( {\left| {( - {h^3} + h)} \right|} \right) - \cos (0)}}{{ - h}}$
Now if we put limit we see that numerator is exact equal to zero $\because \cos 0 - \cos 0 = 0$
So overall limit is equal to zero it does not matter what is in numerator
So $f{'}({0^ - }) = 0$
So from here we see that left hand and right hand derivatives are equal so option C is wrong statement.
4. Not Differentiate at $x = 1$ if $a = 1$ and $b = 1$
Now put value of $a,b$
$f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right) + \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$
Now we have to find that given above function is derivable or not at $x = 1$
As we see earlier that $f(x) = \cos \left( {\left| {{x^3} - x} \right|} \right)$ is differentiable at $x = 1$
(refer prove of option B)
Now we prove that $f(x) = \left| x \right|\sin \left( {\left| {{x^3} + x} \right|} \right)$ is derivable or not at $x = 1$
So left hand derivative
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 - h) - f(1)}}{{ - h}}$
So $f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| {1 - h} \right|\sin \left( {\left| {{{(1 - h)}^3} - (1 - h)} \right|} \right) - \sin 2}}{{ - h}}$
If we put limit
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( 0 \right) - \sin 2}}{0}$
This goes $\infty $ because denominator is zero
$f{'}({1^ - }) = \infty $
Now right hand derivative $f{'}({1^ + }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(1 + h) - f(1)}}{h}$
$f{'}({1^ - }) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left| {1 + h} \right|\sin \left( {\left| {{{(1 + h)}^3} - (1 + h)} \right|} \right) - \sin 2}}{h}$
Now we put limit
$f{'}({1^ - }) = \dfrac{{\sin 0 - \sin 2}}{0}$
As we it goes to $\infty $ because numerator is exact zero
So $f{'}({1^ - }) = \infty $
So given function at $x = 1$ and $a = b = 1$ is derivable
So option D is wrong
Therefore, only the option (A) and (B) are correct.
Note:
Analyse the given information and go step by step while proceeding through the solution. Notice that the use of the chain rule of differentiation is a crucial part of the solution to this problem. Be careful with the use of braces while solving to avoid any confusion. In questions like these, there{{'}}s no choice other than checking for each option one by one.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
