
Let, A = $\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]$, B = \[\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\] and C = \[\left[ \begin{matrix}
{{\left( x+2 \right)}^{2}} & 5{{x}^{2}} & 2x \\
5{{x}^{2}} & 2x & {{\left( x+2 \right)}^{2}} \\
2x & {{\left( x+2 \right)}^{2}} & 5{{x}^{2}} \\
\end{matrix} \right]\] be three given matrices, where a, b, c and x \[\in \] R, given that ‘tr. (AB) = tr. (c)’ \[\vee \] \[x\in R\], where tr. (A) denotes trace of A. Find the value of (a + b + c)
A.6
B.7
C.8
D.9
Answer
616.2k+ views
Hint: Use the formula \[\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
3{{x}^{2}}\times a & 3{{x}^{2}}\times b & 3{{x}^{2}}\times c \\
1\times a & 1\times b & 1\times c \\
6x\times a & 6x\times b & 6x\times c \\
\end{matrix} \right]\] to find the value of (AB) and then find the trace of the matrix (AB) and matrix C by simply adding their diagonal elements and then equate them. By equating their coefficients you will get the values of a, b, and c. Add a, b, and c to get the final answer.
Complete step by step answer:
To solve the above problem we will write the given values first,
A = $\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]$, B = \[\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\], and C = \[\left[ \begin{matrix}
{{\left( x+2 \right)}^{2}} & 5{{x}^{2}} & 2x \\
5{{x}^{2}} & 2x & {{\left( x+2 \right)}^{2}} \\
2x & {{\left( x+2 \right)}^{2}} & 5{{x}^{2}} \\
\end{matrix} \right]\] ……………………….. (1)
Also, tr. (AB) = tr. (c)
As we have given the condition that ‘tr. (AB) = tr. (c)’ and as matrix ‘C’ is given therefore we have to find the matrix (AB) and for that we should know the formula of multiplication of matrix given below,
Formula:
If P = \[\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] and Q = \[\left[ \begin{matrix}
s & t & u \\
\end{matrix} \right]\] the (PQ) will be given as,
\[PQ=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\times \left[ \begin{matrix}
s & t & u \\
\end{matrix} \right]=\left[ \begin{matrix}
p\times s & p\times t & p\times u \\
q\times s & q\times t & q\times u \\
r\times s & r\times t & r\times u \\
\end{matrix} \right]\]
By using the above formula and the given value of matrix A and matrix B from (1) we can write (AB) as,
\[\therefore AB=\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
3{{x}^{2}}\times a & 3{{x}^{2}}\times b & 3{{x}^{2}}\times c \\
1\times a & 1\times b & 1\times c \\
6x\times a & 6x\times b & 6x\times c \\
\end{matrix} \right]\]
\[\therefore AB=\left[ \begin{matrix}
3a{{x}^{2}} & 3b{{x}^{2}} & 3c{{x}^{2}} \\
a & b & c \\
6ax & 6bx & 6cx \\
\end{matrix} \right]\] …………………………………………….. (2)
To find the trace of matrix (AB) and C we have to know the formula given below,
Formula:
If \[A=\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\] then the trace of A is given by the sum of its diagonal elements as shown below,
tr. A = a + e + i ……………………………………………. (3)
By using the equation (3) and equation (2) we can write the trace of (AB) as follows,
\[tr.\text{ }\left( AB \right)\text{ }=~3a{{x}^{2}}+b+6cx\]………………………………. (4)
Also by using equation (3) and the value of matrix C from (1) we will get,
\[tr.(C)={{\left( x+2 \right)}^{2}}+2x+5{{x}^{2}}\] …………………………….. (5)
\[\therefore tr.(C)={{x}^{2}}+2\times \left( 2x \right)+4+2x+5{{x}^{2}}\]
\[\therefore tr.(C)={{x}^{2}}+4x+4+2x+5{{x}^{2}}\]
\[\therefore tr.(C)=6{{x}^{2}}+6x+4\] …………………………………….. (6)
As we have given in the question,
tr. (AB) = tr. (c)
If we put the value of equation (6) and equation (4) in above equation we will get,
\[\therefore ~3a{{x}^{2}}+b+6cx=6{{x}^{2}}+6x+4\]
By rearranging the above equation we will get,
\[\therefore ~3a{{x}^{2}}+6cx+b=6{{x}^{2}}+6x+4\]
Now by equating the coefficients of right hand side with left hand side of the above equations we will get,
3a = 6, 6c = 6, and b = 4
Therefore,
\[a=\dfrac{6}{3}\], \[c=\dfrac{6}{6}\] and b = 4
Therefore,
a = 2, c = 1, and b = 4
Therefore, we will get the values of a, b, and c as,
a = 2,
b = 4 and
c = 1
Now assume L = (a + b + c) ………………………………… (7)
If we put the values of a, b, and c in the above equation we will get,
Therefore, L = 2 + 4 + 1
Therefore, L = 7
From equation (7) and the above equation we will get,
a + b + c = 7
Therefore the value of (a + b + c) is 7.
Note: While solving the equation \[3a{{x}^{2}}+b+6cx=6{{x}^{2}}+6x+4\] solve directly by equating the coefficients otherwise you won’t get any answer.Don't
try to solve by forming a quadratic equation.
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
3{{x}^{2}}\times a & 3{{x}^{2}}\times b & 3{{x}^{2}}\times c \\
1\times a & 1\times b & 1\times c \\
6x\times a & 6x\times b & 6x\times c \\
\end{matrix} \right]\] to find the value of (AB) and then find the trace of the matrix (AB) and matrix C by simply adding their diagonal elements and then equate them. By equating their coefficients you will get the values of a, b, and c. Add a, b, and c to get the final answer.
Complete step by step answer:
To solve the above problem we will write the given values first,
A = $\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]$, B = \[\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\], and C = \[\left[ \begin{matrix}
{{\left( x+2 \right)}^{2}} & 5{{x}^{2}} & 2x \\
5{{x}^{2}} & 2x & {{\left( x+2 \right)}^{2}} \\
2x & {{\left( x+2 \right)}^{2}} & 5{{x}^{2}} \\
\end{matrix} \right]\] ……………………….. (1)
Also, tr. (AB) = tr. (c)
As we have given the condition that ‘tr. (AB) = tr. (c)’ and as matrix ‘C’ is given therefore we have to find the matrix (AB) and for that we should know the formula of multiplication of matrix given below,
Formula:
If P = \[\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] and Q = \[\left[ \begin{matrix}
s & t & u \\
\end{matrix} \right]\] the (PQ) will be given as,
\[PQ=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\times \left[ \begin{matrix}
s & t & u \\
\end{matrix} \right]=\left[ \begin{matrix}
p\times s & p\times t & p\times u \\
q\times s & q\times t & q\times u \\
r\times s & r\times t & r\times u \\
\end{matrix} \right]\]
By using the above formula and the given value of matrix A and matrix B from (1) we can write (AB) as,
\[\therefore AB=\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
3{{x}^{2}}\times a & 3{{x}^{2}}\times b & 3{{x}^{2}}\times c \\
1\times a & 1\times b & 1\times c \\
6x\times a & 6x\times b & 6x\times c \\
\end{matrix} \right]\]
\[\therefore AB=\left[ \begin{matrix}
3a{{x}^{2}} & 3b{{x}^{2}} & 3c{{x}^{2}} \\
a & b & c \\
6ax & 6bx & 6cx \\
\end{matrix} \right]\] …………………………………………….. (2)
To find the trace of matrix (AB) and C we have to know the formula given below,
Formula:
If \[A=\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\] then the trace of A is given by the sum of its diagonal elements as shown below,
tr. A = a + e + i ……………………………………………. (3)
By using the equation (3) and equation (2) we can write the trace of (AB) as follows,
\[tr.\text{ }\left( AB \right)\text{ }=~3a{{x}^{2}}+b+6cx\]………………………………. (4)
Also by using equation (3) and the value of matrix C from (1) we will get,
\[tr.(C)={{\left( x+2 \right)}^{2}}+2x+5{{x}^{2}}\] …………………………….. (5)
\[\therefore tr.(C)={{x}^{2}}+2\times \left( 2x \right)+4+2x+5{{x}^{2}}\]
\[\therefore tr.(C)={{x}^{2}}+4x+4+2x+5{{x}^{2}}\]
\[\therefore tr.(C)=6{{x}^{2}}+6x+4\] …………………………………….. (6)
As we have given in the question,
tr. (AB) = tr. (c)
If we put the value of equation (6) and equation (4) in above equation we will get,
\[\therefore ~3a{{x}^{2}}+b+6cx=6{{x}^{2}}+6x+4\]
By rearranging the above equation we will get,
\[\therefore ~3a{{x}^{2}}+6cx+b=6{{x}^{2}}+6x+4\]
Now by equating the coefficients of right hand side with left hand side of the above equations we will get,
3a = 6, 6c = 6, and b = 4
Therefore,
\[a=\dfrac{6}{3}\], \[c=\dfrac{6}{6}\] and b = 4
Therefore,
a = 2, c = 1, and b = 4
Therefore, we will get the values of a, b, and c as,
a = 2,
b = 4 and
c = 1
Now assume L = (a + b + c) ………………………………… (7)
If we put the values of a, b, and c in the above equation we will get,
Therefore, L = 2 + 4 + 1
Therefore, L = 7
From equation (7) and the above equation we will get,
a + b + c = 7
Therefore the value of (a + b + c) is 7.
Note: While solving the equation \[3a{{x}^{2}}+b+6cx=6{{x}^{2}}+6x+4\] solve directly by equating the coefficients otherwise you won’t get any answer.Don't
try to solve by forming a quadratic equation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

