
Let, A = $\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]$, B = \[\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\] and C = \[\left[ \begin{matrix}
{{\left( x+2 \right)}^{2}} & 5{{x}^{2}} & 2x \\
5{{x}^{2}} & 2x & {{\left( x+2 \right)}^{2}} \\
2x & {{\left( x+2 \right)}^{2}} & 5{{x}^{2}} \\
\end{matrix} \right]\] be three given matrices, where a, b, c and x \[\in \] R, given that ‘tr. (AB) = tr. (c)’ \[\vee \] \[x\in R\], where tr. (A) denotes trace of A. Find the value of (a + b + c)
A.6
B.7
C.8
D.9
Answer
602.1k+ views
Hint: Use the formula \[\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
3{{x}^{2}}\times a & 3{{x}^{2}}\times b & 3{{x}^{2}}\times c \\
1\times a & 1\times b & 1\times c \\
6x\times a & 6x\times b & 6x\times c \\
\end{matrix} \right]\] to find the value of (AB) and then find the trace of the matrix (AB) and matrix C by simply adding their diagonal elements and then equate them. By equating their coefficients you will get the values of a, b, and c. Add a, b, and c to get the final answer.
Complete step by step answer:
To solve the above problem we will write the given values first,
A = $\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]$, B = \[\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\], and C = \[\left[ \begin{matrix}
{{\left( x+2 \right)}^{2}} & 5{{x}^{2}} & 2x \\
5{{x}^{2}} & 2x & {{\left( x+2 \right)}^{2}} \\
2x & {{\left( x+2 \right)}^{2}} & 5{{x}^{2}} \\
\end{matrix} \right]\] ……………………….. (1)
Also, tr. (AB) = tr. (c)
As we have given the condition that ‘tr. (AB) = tr. (c)’ and as matrix ‘C’ is given therefore we have to find the matrix (AB) and for that we should know the formula of multiplication of matrix given below,
Formula:
If P = \[\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] and Q = \[\left[ \begin{matrix}
s & t & u \\
\end{matrix} \right]\] the (PQ) will be given as,
\[PQ=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\times \left[ \begin{matrix}
s & t & u \\
\end{matrix} \right]=\left[ \begin{matrix}
p\times s & p\times t & p\times u \\
q\times s & q\times t & q\times u \\
r\times s & r\times t & r\times u \\
\end{matrix} \right]\]
By using the above formula and the given value of matrix A and matrix B from (1) we can write (AB) as,
\[\therefore AB=\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
3{{x}^{2}}\times a & 3{{x}^{2}}\times b & 3{{x}^{2}}\times c \\
1\times a & 1\times b & 1\times c \\
6x\times a & 6x\times b & 6x\times c \\
\end{matrix} \right]\]
\[\therefore AB=\left[ \begin{matrix}
3a{{x}^{2}} & 3b{{x}^{2}} & 3c{{x}^{2}} \\
a & b & c \\
6ax & 6bx & 6cx \\
\end{matrix} \right]\] …………………………………………….. (2)
To find the trace of matrix (AB) and C we have to know the formula given below,
Formula:
If \[A=\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\] then the trace of A is given by the sum of its diagonal elements as shown below,
tr. A = a + e + i ……………………………………………. (3)
By using the equation (3) and equation (2) we can write the trace of (AB) as follows,
\[tr.\text{ }\left( AB \right)\text{ }=~3a{{x}^{2}}+b+6cx\]………………………………. (4)
Also by using equation (3) and the value of matrix C from (1) we will get,
\[tr.(C)={{\left( x+2 \right)}^{2}}+2x+5{{x}^{2}}\] …………………………….. (5)
\[\therefore tr.(C)={{x}^{2}}+2\times \left( 2x \right)+4+2x+5{{x}^{2}}\]
\[\therefore tr.(C)={{x}^{2}}+4x+4+2x+5{{x}^{2}}\]
\[\therefore tr.(C)=6{{x}^{2}}+6x+4\] …………………………………….. (6)
As we have given in the question,
tr. (AB) = tr. (c)
If we put the value of equation (6) and equation (4) in above equation we will get,
\[\therefore ~3a{{x}^{2}}+b+6cx=6{{x}^{2}}+6x+4\]
By rearranging the above equation we will get,
\[\therefore ~3a{{x}^{2}}+6cx+b=6{{x}^{2}}+6x+4\]
Now by equating the coefficients of right hand side with left hand side of the above equations we will get,
3a = 6, 6c = 6, and b = 4
Therefore,
\[a=\dfrac{6}{3}\], \[c=\dfrac{6}{6}\] and b = 4
Therefore,
a = 2, c = 1, and b = 4
Therefore, we will get the values of a, b, and c as,
a = 2,
b = 4 and
c = 1
Now assume L = (a + b + c) ………………………………… (7)
If we put the values of a, b, and c in the above equation we will get,
Therefore, L = 2 + 4 + 1
Therefore, L = 7
From equation (7) and the above equation we will get,
a + b + c = 7
Therefore the value of (a + b + c) is 7.
Note: While solving the equation \[3a{{x}^{2}}+b+6cx=6{{x}^{2}}+6x+4\] solve directly by equating the coefficients otherwise you won’t get any answer.Don't
try to solve by forming a quadratic equation.
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
3{{x}^{2}}\times a & 3{{x}^{2}}\times b & 3{{x}^{2}}\times c \\
1\times a & 1\times b & 1\times c \\
6x\times a & 6x\times b & 6x\times c \\
\end{matrix} \right]\] to find the value of (AB) and then find the trace of the matrix (AB) and matrix C by simply adding their diagonal elements and then equate them. By equating their coefficients you will get the values of a, b, and c. Add a, b, and c to get the final answer.
Complete step by step answer:
To solve the above problem we will write the given values first,
A = $\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]$, B = \[\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\], and C = \[\left[ \begin{matrix}
{{\left( x+2 \right)}^{2}} & 5{{x}^{2}} & 2x \\
5{{x}^{2}} & 2x & {{\left( x+2 \right)}^{2}} \\
2x & {{\left( x+2 \right)}^{2}} & 5{{x}^{2}} \\
\end{matrix} \right]\] ……………………….. (1)
Also, tr. (AB) = tr. (c)
As we have given the condition that ‘tr. (AB) = tr. (c)’ and as matrix ‘C’ is given therefore we have to find the matrix (AB) and for that we should know the formula of multiplication of matrix given below,
Formula:
If P = \[\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] and Q = \[\left[ \begin{matrix}
s & t & u \\
\end{matrix} \right]\] the (PQ) will be given as,
\[PQ=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\times \left[ \begin{matrix}
s & t & u \\
\end{matrix} \right]=\left[ \begin{matrix}
p\times s & p\times t & p\times u \\
q\times s & q\times t & q\times u \\
r\times s & r\times t & r\times u \\
\end{matrix} \right]\]
By using the above formula and the given value of matrix A and matrix B from (1) we can write (AB) as,
\[\therefore AB=\left[ \begin{matrix}
3{{x}^{2}} \\
1 \\
6x \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
3{{x}^{2}}\times a & 3{{x}^{2}}\times b & 3{{x}^{2}}\times c \\
1\times a & 1\times b & 1\times c \\
6x\times a & 6x\times b & 6x\times c \\
\end{matrix} \right]\]
\[\therefore AB=\left[ \begin{matrix}
3a{{x}^{2}} & 3b{{x}^{2}} & 3c{{x}^{2}} \\
a & b & c \\
6ax & 6bx & 6cx \\
\end{matrix} \right]\] …………………………………………….. (2)
To find the trace of matrix (AB) and C we have to know the formula given below,
Formula:
If \[A=\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\] then the trace of A is given by the sum of its diagonal elements as shown below,
tr. A = a + e + i ……………………………………………. (3)
By using the equation (3) and equation (2) we can write the trace of (AB) as follows,
\[tr.\text{ }\left( AB \right)\text{ }=~3a{{x}^{2}}+b+6cx\]………………………………. (4)
Also by using equation (3) and the value of matrix C from (1) we will get,
\[tr.(C)={{\left( x+2 \right)}^{2}}+2x+5{{x}^{2}}\] …………………………….. (5)
\[\therefore tr.(C)={{x}^{2}}+2\times \left( 2x \right)+4+2x+5{{x}^{2}}\]
\[\therefore tr.(C)={{x}^{2}}+4x+4+2x+5{{x}^{2}}\]
\[\therefore tr.(C)=6{{x}^{2}}+6x+4\] …………………………………….. (6)
As we have given in the question,
tr. (AB) = tr. (c)
If we put the value of equation (6) and equation (4) in above equation we will get,
\[\therefore ~3a{{x}^{2}}+b+6cx=6{{x}^{2}}+6x+4\]
By rearranging the above equation we will get,
\[\therefore ~3a{{x}^{2}}+6cx+b=6{{x}^{2}}+6x+4\]
Now by equating the coefficients of right hand side with left hand side of the above equations we will get,
3a = 6, 6c = 6, and b = 4
Therefore,
\[a=\dfrac{6}{3}\], \[c=\dfrac{6}{6}\] and b = 4
Therefore,
a = 2, c = 1, and b = 4
Therefore, we will get the values of a, b, and c as,
a = 2,
b = 4 and
c = 1
Now assume L = (a + b + c) ………………………………… (7)
If we put the values of a, b, and c in the above equation we will get,
Therefore, L = 2 + 4 + 1
Therefore, L = 7
From equation (7) and the above equation we will get,
a + b + c = 7
Therefore the value of (a + b + c) is 7.
Note: While solving the equation \[3a{{x}^{2}}+b+6cx=6{{x}^{2}}+6x+4\] solve directly by equating the coefficients otherwise you won’t get any answer.Don't
try to solve by forming a quadratic equation.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

