
Let a function $f:N\to N;f(x)=2x$ for all $x\in N$. Show that f is one-one and into function.
Answer
513.9k+ views
Hint: To prove that the given function is one-one, assume two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the set of the domain of the given function and show that, if $f({{x}_{1}})=f({{x}_{2}})$ then, ${{x}_{1}}={{x}_{2}}$. To prove that the given function is into, show that the set of $f(x)$, that is co-domain, contains such elements which do not have a pre-image in the set of ‘x’ or domain.
Complete step-by-step solution -
It is given that function is defined for all natural numbers and over all natural numbers. Therefore, both domain and co-domain of the given function consists of the set of all natural numbers.
First let us prove that the function is one-one.
Assume two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the set of the domain of the given function. Therefore,
\[f({{x}_{1}})=f({{x}_{2}})\]
Substituting, ${{x}_{1}}\text{ and }{{x}_{2}}$ in the function, we get,
\[\begin{align}
& 2{{x}_{1}}=2{{x}_{2}} \\
& \Rightarrow 2{{x}_{1}}-2{{x}_{2}}=0 \\
& \Rightarrow 2({{x}_{1}}-{{x}_{2}})=0 \\
& \Rightarrow {{x}_{1}}-{{x}_{2}}=0 \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}\]
Hence, it is proved that if $f({{x}_{1}})=f({{x}_{2}})$ then, ${{x}_{1}}={{x}_{2}}$. Therefore, $f(x)$ is a one-one function.
Now, let us prove that the given function is into.
Clearly, we can see that the co-domain of the function contains the set of natural numbers. But every natural number in the set of co-domain does not have a pre-image in the domain. For example: ‘1’ is a natural number and hence an element in the set of co-domain but for no value of ‘x’, the value of $f(x)$ is 1. Hence, the element 1 in the co-domain does not have a pre-image in domain.
Therefore, it is proved that $f(x)$ is into function.
Note: One may note that if we will get any relation between ${{x}_{1}}\text{ and }{{x}_{2}}$ other than ${{x}_{1}}={{x}_{2}}$, then the function will be not one-one. It will be many-one. Now, if every element in the co-domain has a preimage in domain, then the function will be onto and not into. So, remember all the definitions of the types of functions, so that you may not get confused.
Complete step-by-step solution -
It is given that function is defined for all natural numbers and over all natural numbers. Therefore, both domain and co-domain of the given function consists of the set of all natural numbers.
First let us prove that the function is one-one.
Assume two elements ${{x}_{1}}\text{ and }{{x}_{2}}$ in the set of the domain of the given function. Therefore,
\[f({{x}_{1}})=f({{x}_{2}})\]
Substituting, ${{x}_{1}}\text{ and }{{x}_{2}}$ in the function, we get,
\[\begin{align}
& 2{{x}_{1}}=2{{x}_{2}} \\
& \Rightarrow 2{{x}_{1}}-2{{x}_{2}}=0 \\
& \Rightarrow 2({{x}_{1}}-{{x}_{2}})=0 \\
& \Rightarrow {{x}_{1}}-{{x}_{2}}=0 \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}\]
Hence, it is proved that if $f({{x}_{1}})=f({{x}_{2}})$ then, ${{x}_{1}}={{x}_{2}}$. Therefore, $f(x)$ is a one-one function.
Now, let us prove that the given function is into.
Clearly, we can see that the co-domain of the function contains the set of natural numbers. But every natural number in the set of co-domain does not have a pre-image in the domain. For example: ‘1’ is a natural number and hence an element in the set of co-domain but for no value of ‘x’, the value of $f(x)$ is 1. Hence, the element 1 in the co-domain does not have a pre-image in domain.
Therefore, it is proved that $f(x)$ is into function.
Note: One may note that if we will get any relation between ${{x}_{1}}\text{ and }{{x}_{2}}$ other than ${{x}_{1}}={{x}_{2}}$, then the function will be not one-one. It will be many-one. Now, if every element in the co-domain has a preimage in domain, then the function will be onto and not into. So, remember all the definitions of the types of functions, so that you may not get confused.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
