
Let a, b, be positive real numbers. If $a,{{G}_{1}},{{G}_{2}},b$ are in geometric progression and $a,{{H}_{1}},{{H}_{2}},b$ are in harmonic progression show that
$\dfrac{{{G}_{1}}{{G}_{2}}}{{{H}_{1}}{{H}_{2}}}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab}$
Answer
607.2k+ views
Hint: A geometric progression (GP), also called a geometric sequence, is a sequence of numbers that differ from each other by a common ratio. A harmonic progression is a sequence of real numbers formed by taking the reciprocals of an arithmetic progression.
Complete step-by-step answer:
It is given in the question that a, b are positive real numbers.
And it is also given that $a,{{G}_{1}},{{G}_{2}},b$ are in geometric progression, and we know that a geometric progression (GP), also called a geometric sequence, is a sequence of numbers that differ from each other by a common ratio.
Therefore, we can say that the ratio of two consecutive terms is the same.
\[\dfrac{{{G}_{1}}}{a}=\dfrac{b}{{{G}_{2}}}\]
Now we will cross-multiply the equation.
${{G}_{1}}{{G}_{2}}=ab....\left( i \right)$
Now it is also given in the question that $a,{{H}_{1}},{{H}_{2}},b$ are in the harmonic progression and we know that harmonic progression is a sequence of real numbers formed by taking the reciprocals of an arithmetic progression.
For example, $\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z}......$ series is a harmonic series, then according to it x, y, z…. is an A.P.
Since it is given in the question that $a,{{H}_{1}},{{H}_{2}},b$ are in harmonic progression, we can write that $\dfrac{1}{a},\dfrac{1}{{{H}_{1}}},\dfrac{1}{{{H}_{2}}},\dfrac{1}{b}$ are in A.P.
The first term of A.P is $\dfrac{1}{a}$ and let common differences be d . And we know that the general form of A.P is ${{a}_{n}}=a+\left( n-1 \right)d$ where a is the first term, the common difference is d and n is ${{n}^{th}}$ term.
Then we can say that
$\dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+d....\left( ii \right)$
And similarly,
$\dfrac{1}{{{H}_{2}}}=\dfrac{1}{a}+2d....\left( iii \right)$
And,
$\dfrac{1}{b}=\dfrac{1}{a}+3d....\left( iv \right)$
Now using equation (iii), we can find the value of d
$d=\dfrac{\dfrac{1}{b}-\dfrac{1}{a}}{3}=\dfrac{a-b}{3ab}....\left( v \right)$
Now substitute the value of d in equation (ii) using equation (v).
$\begin{align}
& \dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+\dfrac{a-b}{3ab} \\
& \dfrac{1}{{{H}_{1}}}=\dfrac{3b+a-b}{3ab} \\
\end{align}$
$\dfrac{1}{{{H}_{1}}}=\dfrac{a+2b}{3ab}$
Now, we take the reciprocal on both sides, we get,
${{H}_{1}}=\dfrac{3ab}{a+2b}....\left( vi \right)$
Now substitute the value of d in equation (iii) using equation (v).
$\begin{align}
& \dfrac{1}{{{H}_{2}}}=\dfrac{1}{a}+2\left( \dfrac{a-b}{3ab} \right) \\
& \dfrac{1}{{{H}_{2}}}=\dfrac{3b+2a-2b}{3ab} \\
& \dfrac{1}{{{H}_{2}}}=3\dfrac{2a+b}{ab} \\
\end{align}$
Now, we take the reciprocal on both sides, we get,
${{H}_{2}}=\dfrac{3ab}{2a+b}....\left( vii \right)$
Now we need to prove the equation $\dfrac{{{G}_{1}}{{G}_{2}}}{{{H}_{1}}{{H}_{2}}}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab}$ that is given in the question. So, we will substitute the values on the left-hand side of the equation and check that it would be equal to the right-hand side of the equation or not.
Using equation (i), (vi) and (vii).
$\begin{align}
& \dfrac{{{G}_{1}}{{G}_{2}}}{{{H}_{1}}{{H}_{2}}}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab} \\
& \dfrac{ab}{\left( \dfrac{3ab}{2b+a} \right)\left( \dfrac{3ab}{2a+b} \right)}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab} \\
& \dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab} \\
\end{align}$
Hence, it proves that $\dfrac{{{G}_{1}}{{G}_{2}}}{{{H}_{1}}{{H}_{2}}}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab}$.
Note: To solve the question we must write the terms ${{H}_{1}}\text{ and }{{H}_{2}}$ of a, b and avoid using any extra variable. Similarly, write ${{G}_{1}}\text{ and }{{G}_{2}}$ in terms of a, b. The possibility of mistake could be done here in understanding the significance of the Harmonic series. Remember we have to consider the reciprocal of its term as an arithmetic series.
Complete step-by-step answer:
It is given in the question that a, b are positive real numbers.
And it is also given that $a,{{G}_{1}},{{G}_{2}},b$ are in geometric progression, and we know that a geometric progression (GP), also called a geometric sequence, is a sequence of numbers that differ from each other by a common ratio.
Therefore, we can say that the ratio of two consecutive terms is the same.
\[\dfrac{{{G}_{1}}}{a}=\dfrac{b}{{{G}_{2}}}\]
Now we will cross-multiply the equation.
${{G}_{1}}{{G}_{2}}=ab....\left( i \right)$
Now it is also given in the question that $a,{{H}_{1}},{{H}_{2}},b$ are in the harmonic progression and we know that harmonic progression is a sequence of real numbers formed by taking the reciprocals of an arithmetic progression.
For example, $\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z}......$ series is a harmonic series, then according to it x, y, z…. is an A.P.
Since it is given in the question that $a,{{H}_{1}},{{H}_{2}},b$ are in harmonic progression, we can write that $\dfrac{1}{a},\dfrac{1}{{{H}_{1}}},\dfrac{1}{{{H}_{2}}},\dfrac{1}{b}$ are in A.P.
The first term of A.P is $\dfrac{1}{a}$ and let common differences be d . And we know that the general form of A.P is ${{a}_{n}}=a+\left( n-1 \right)d$ where a is the first term, the common difference is d and n is ${{n}^{th}}$ term.
Then we can say that
$\dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+d....\left( ii \right)$
And similarly,
$\dfrac{1}{{{H}_{2}}}=\dfrac{1}{a}+2d....\left( iii \right)$
And,
$\dfrac{1}{b}=\dfrac{1}{a}+3d....\left( iv \right)$
Now using equation (iii), we can find the value of d
$d=\dfrac{\dfrac{1}{b}-\dfrac{1}{a}}{3}=\dfrac{a-b}{3ab}....\left( v \right)$
Now substitute the value of d in equation (ii) using equation (v).
$\begin{align}
& \dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+\dfrac{a-b}{3ab} \\
& \dfrac{1}{{{H}_{1}}}=\dfrac{3b+a-b}{3ab} \\
\end{align}$
$\dfrac{1}{{{H}_{1}}}=\dfrac{a+2b}{3ab}$
Now, we take the reciprocal on both sides, we get,
${{H}_{1}}=\dfrac{3ab}{a+2b}....\left( vi \right)$
Now substitute the value of d in equation (iii) using equation (v).
$\begin{align}
& \dfrac{1}{{{H}_{2}}}=\dfrac{1}{a}+2\left( \dfrac{a-b}{3ab} \right) \\
& \dfrac{1}{{{H}_{2}}}=\dfrac{3b+2a-2b}{3ab} \\
& \dfrac{1}{{{H}_{2}}}=3\dfrac{2a+b}{ab} \\
\end{align}$
Now, we take the reciprocal on both sides, we get,
${{H}_{2}}=\dfrac{3ab}{2a+b}....\left( vii \right)$
Now we need to prove the equation $\dfrac{{{G}_{1}}{{G}_{2}}}{{{H}_{1}}{{H}_{2}}}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab}$ that is given in the question. So, we will substitute the values on the left-hand side of the equation and check that it would be equal to the right-hand side of the equation or not.
Using equation (i), (vi) and (vii).
$\begin{align}
& \dfrac{{{G}_{1}}{{G}_{2}}}{{{H}_{1}}{{H}_{2}}}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab} \\
& \dfrac{ab}{\left( \dfrac{3ab}{2b+a} \right)\left( \dfrac{3ab}{2a+b} \right)}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab} \\
& \dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab} \\
\end{align}$
Hence, it proves that $\dfrac{{{G}_{1}}{{G}_{2}}}{{{H}_{1}}{{H}_{2}}}=\dfrac{\left( 2a+b \right)\left( a+2b \right)}{9ab}$.
Note: To solve the question we must write the terms ${{H}_{1}}\text{ and }{{H}_{2}}$ of a, b and avoid using any extra variable. Similarly, write ${{G}_{1}}\text{ and }{{G}_{2}}$ in terms of a, b. The possibility of mistake could be done here in understanding the significance of the Harmonic series. Remember we have to consider the reciprocal of its term as an arithmetic series.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

