Answer
Verified
484.5k+ views
Hint: If a set A has $n$ elements and set B has $m$ elements and if $f$ is a function from A to B then maximum number of mappings from A to B is given by the formula ${{n}^{m}}$ or we can say maximum number of definitions of $f$ is ${{n}^{m}}$.
Complete step-by-step answer:
First we should understand what is a function and its difference with relation and then we will know about one-one function which is a type of function.
A function is a relation which describes that there should be only one output for each input. Now, a relation is a set of inputs and outputs that are related in some way. The basic difference between a relation and a function is that, when each input in a relation has exactly one output, the relation is said to be a function. However one output may be related to several inputs. If we want to check if a relation is a function or not, we check that no input has more than one output.
Now, there are different types of functions and here we have to see only one-one functions. One-one function can be defined as a function that maps distinct elements of its domain to distinct elements of its co-domain or range. In the above question elements of set A are domains and elements of set B are co-domains or range. One-one function is also called an injective function.
Now, consider set A = (1, 2, 3) and set B = (a, b, c).
f is a function from A to B
$\therefore $Maximum number of definitions of $f$ = ${{3}^{3}}$ = 27, since both sets have 3 elements.
Also, $g$ is a one-one function from A to B, so each element of set A is related to only one element of set B. So, we cannot use ${{n}^{m}}$ here and therefore, we need to take a different approach. We can see that element (a) can be mapped by one of the three elements (1, 2 or 3). So, there are three ways to map (a). Now once (a) is mapped only two elements in both the sets are remaining. So, let us map (b) next and it can be mapped by either of the two elements remaining in set A, so, there will be 2 ways to map (b). Now only one element is left in both the sets and there will be only one way to map.
$\therefore $Maximum number of definitions of $g$ = $3\times 2\times 1$ = $6$.
Hence, option (c) and (d) are correct.
Note: We should learn and understand the concepts of functions and its difference with relations. Types of functions are an important topic to discuss. The main difficulty we may face while thinking over this question is two different approaches for two different situations. In the first situation of the question the function from A to B was not one-one but in the second situation it was for $g$.
Complete step-by-step answer:
First we should understand what is a function and its difference with relation and then we will know about one-one function which is a type of function.
A function is a relation which describes that there should be only one output for each input. Now, a relation is a set of inputs and outputs that are related in some way. The basic difference between a relation and a function is that, when each input in a relation has exactly one output, the relation is said to be a function. However one output may be related to several inputs. If we want to check if a relation is a function or not, we check that no input has more than one output.
Now, there are different types of functions and here we have to see only one-one functions. One-one function can be defined as a function that maps distinct elements of its domain to distinct elements of its co-domain or range. In the above question elements of set A are domains and elements of set B are co-domains or range. One-one function is also called an injective function.
Now, consider set A = (1, 2, 3) and set B = (a, b, c).
f is a function from A to B
$\therefore $Maximum number of definitions of $f$ = ${{3}^{3}}$ = 27, since both sets have 3 elements.
Also, $g$ is a one-one function from A to B, so each element of set A is related to only one element of set B. So, we cannot use ${{n}^{m}}$ here and therefore, we need to take a different approach. We can see that element (a) can be mapped by one of the three elements (1, 2 or 3). So, there are three ways to map (a). Now once (a) is mapped only two elements in both the sets are remaining. So, let us map (b) next and it can be mapped by either of the two elements remaining in set A, so, there will be 2 ways to map (b). Now only one element is left in both the sets and there will be only one way to map.
$\therefore $Maximum number of definitions of $g$ = $3\times 2\times 1$ = $6$.
Hence, option (c) and (d) are correct.
Note: We should learn and understand the concepts of functions and its difference with relations. Types of functions are an important topic to discuss. The main difficulty we may face while thinking over this question is two different approaches for two different situations. In the first situation of the question the function from A to B was not one-one but in the second situation it was for $g$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE