
Let $0\le \theta \le \dfrac{\pi }{2}$ and $x=X\cos \theta +Y\sin \theta ,y=X\sin \theta -Y\cos \theta $ such that ${{x}^{2}}+4xy+{{y}^{2}}=a{{X}^{2}}+b{{Y}^{2}},$ where a, b are constants then
A. a=-1, b=3
B. $\theta =\dfrac{\pi }{4}$
C. a=3, b=-1
D. $\theta =\dfrac{\pi }{3}$
Answer
510.9k+ views
Hint: We solve this question by substituting the values of x and y given, in the left-hand side of the expression ${{x}^{2}}+4xy+{{y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}.$ Then we simplify the terms on the left-hand side to get only the terms ${{X}^{2}}$ and ${{Y}^{2}}$ in terms of coefficients which should equate to a and b. If we find additional terms, we equate it to 0 and obtain the answer.
Complete step by step answer:
In order to solve this question, let us consider the given values of x and y. We know from the question that,
$\Rightarrow x=X\cos \theta +Y\sin \theta $
$\Rightarrow y=X\sin \theta -Y\cos \theta $
Now, we are also given the expression,
$\Rightarrow {{x}^{2}}+4xy+{{y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}$
We shall solve only the left-hand side first. Substituting the two values for x and y in the above equation on the left-hand side,
$\Rightarrow {{\left( X\cos \theta +Y\sin \theta \right)}^{2}}+4\left( X\cos \theta +Y\sin \theta \right)\left( X\sin \theta -Y\cos \theta \right)+{{\left( X\sin \theta -Y\cos \theta \right)}^{2}}$
Expanding the terms by using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab,$ and multiplying the middle terms together,
$\begin{align}
& \Rightarrow {{X}^{2}}{{\cos }^{2}}\theta +{{Y}^{2}}{{\sin }^{2}}\theta +2XY\sin \theta \cos \theta +4\left( {{X}^{2}}\sin \theta \cos \theta +XY{{\sin }^{2}}\theta -XY{{\cos }^{2}}\theta -{{Y}^{2}}\sin \theta \cos \theta \right)+ \\
& \text{ }{{X}^{2}}{{\sin }^{2}}\theta +{{Y}^{2}}{{\cos }^{2}}\theta -2XY\sin \theta \cos \theta \\
\end{align}$
Now, we can cancel the third term and the last term as they are the subtraction of the same terms. Then we group ${{X}^{2}},{{Y}^{2}},XY$ terms separately,
$\Rightarrow {{X}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta -4\sin \theta \cos \theta \right)+XY\left( 4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta \right)$
Now, we know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1.$ Using this in the above equation,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( 4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta \right)$
We also know the relation that $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta .$ Using this for the third term,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( -4\cos 2\theta \right)$
Now, we shall compare both sides of the equation,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( -4\cos 2\theta \right)=a{{X}^{2}}+b{{Y}^{2}}$
As we can see, there are only terms for ${{X}^{2}}$ and ${{Y}^{2}}$ on the right-hand side. Since the right-hand side does not have any $XY$ terms, we equate the $XY$ term on the left-hand side to 0.
$\Rightarrow \left( -4\cos 2\theta \right)=0$
Dividing both sides by -4,
$\Rightarrow \cos 2\theta =0$
We know $\cos x=0$ implies that $x=\dfrac{\pi }{2}$ or any multiple of it. Using the first value of it here,
$\Rightarrow 2\theta =\dfrac{\pi }{2}$
Dividing both sides by 2,
$\Rightarrow \theta =\dfrac{\pi }{4}$
Hence, the value of $\theta =\dfrac{\pi }{4}.$ We now substitute this for the left-hand side of the equation to obtain the values of a and b.
$\Rightarrow {{X}^{2}}\left( 1+4\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4} \right)+{{Y}^{2}}\left( 1-4\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4} \right)=a{{X}^{2}}+b{{Y}^{2}}$
We know the value of $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.$ Using this in the above equation,
$\Rightarrow {{X}^{2}}\left( 1+4.\dfrac{1}{\sqrt{2}}.\dfrac{1}{\sqrt{2}} \right)+{{Y}^{2}}\left( 1-4.\dfrac{1}{\sqrt{2}}.\dfrac{1}{\sqrt{2}} \right)=a{{X}^{2}}+b{{Y}^{2}}$
Multiplying the three terms gives us 2,
$\Rightarrow {{X}^{2}}\left( 1+2 \right)+{{Y}^{2}}\left( 1-2 \right)=a{{X}^{2}}+b{{Y}^{2}}$
Adding and subtracting the terms in the brackets,
$\Rightarrow 3{{X}^{2}}-1{{Y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}$
Hence, the values of a=3 and b=-1.
So, the correct answer is “Option B and C”.
Note: We need to know the basic trigonometric formulae and values of standard angles in order to solve such sum. Care must be taken while expanding and simplifying the terms as students tend to miss out a term or two during calculation and it could lead to a wrong answer.
Complete step by step answer:
In order to solve this question, let us consider the given values of x and y. We know from the question that,
$\Rightarrow x=X\cos \theta +Y\sin \theta $
$\Rightarrow y=X\sin \theta -Y\cos \theta $
Now, we are also given the expression,
$\Rightarrow {{x}^{2}}+4xy+{{y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}$
We shall solve only the left-hand side first. Substituting the two values for x and y in the above equation on the left-hand side,
$\Rightarrow {{\left( X\cos \theta +Y\sin \theta \right)}^{2}}+4\left( X\cos \theta +Y\sin \theta \right)\left( X\sin \theta -Y\cos \theta \right)+{{\left( X\sin \theta -Y\cos \theta \right)}^{2}}$
Expanding the terms by using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab,$ and multiplying the middle terms together,
$\begin{align}
& \Rightarrow {{X}^{2}}{{\cos }^{2}}\theta +{{Y}^{2}}{{\sin }^{2}}\theta +2XY\sin \theta \cos \theta +4\left( {{X}^{2}}\sin \theta \cos \theta +XY{{\sin }^{2}}\theta -XY{{\cos }^{2}}\theta -{{Y}^{2}}\sin \theta \cos \theta \right)+ \\
& \text{ }{{X}^{2}}{{\sin }^{2}}\theta +{{Y}^{2}}{{\cos }^{2}}\theta -2XY\sin \theta \cos \theta \\
\end{align}$
Now, we can cancel the third term and the last term as they are the subtraction of the same terms. Then we group ${{X}^{2}},{{Y}^{2}},XY$ terms separately,
$\Rightarrow {{X}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta -4\sin \theta \cos \theta \right)+XY\left( 4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta \right)$
Now, we know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1.$ Using this in the above equation,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( 4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta \right)$
We also know the relation that $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta .$ Using this for the third term,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( -4\cos 2\theta \right)$
Now, we shall compare both sides of the equation,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( -4\cos 2\theta \right)=a{{X}^{2}}+b{{Y}^{2}}$
As we can see, there are only terms for ${{X}^{2}}$ and ${{Y}^{2}}$ on the right-hand side. Since the right-hand side does not have any $XY$ terms, we equate the $XY$ term on the left-hand side to 0.
$\Rightarrow \left( -4\cos 2\theta \right)=0$
Dividing both sides by -4,
$\Rightarrow \cos 2\theta =0$
We know $\cos x=0$ implies that $x=\dfrac{\pi }{2}$ or any multiple of it. Using the first value of it here,
$\Rightarrow 2\theta =\dfrac{\pi }{2}$
Dividing both sides by 2,
$\Rightarrow \theta =\dfrac{\pi }{4}$
Hence, the value of $\theta =\dfrac{\pi }{4}.$ We now substitute this for the left-hand side of the equation to obtain the values of a and b.
$\Rightarrow {{X}^{2}}\left( 1+4\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4} \right)+{{Y}^{2}}\left( 1-4\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4} \right)=a{{X}^{2}}+b{{Y}^{2}}$
We know the value of $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.$ Using this in the above equation,
$\Rightarrow {{X}^{2}}\left( 1+4.\dfrac{1}{\sqrt{2}}.\dfrac{1}{\sqrt{2}} \right)+{{Y}^{2}}\left( 1-4.\dfrac{1}{\sqrt{2}}.\dfrac{1}{\sqrt{2}} \right)=a{{X}^{2}}+b{{Y}^{2}}$
Multiplying the three terms gives us 2,
$\Rightarrow {{X}^{2}}\left( 1+2 \right)+{{Y}^{2}}\left( 1-2 \right)=a{{X}^{2}}+b{{Y}^{2}}$
Adding and subtracting the terms in the brackets,
$\Rightarrow 3{{X}^{2}}-1{{Y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}$
Hence, the values of a=3 and b=-1.
So, the correct answer is “Option B and C”.
Note: We need to know the basic trigonometric formulae and values of standard angles in order to solve such sum. Care must be taken while expanding and simplifying the terms as students tend to miss out a term or two during calculation and it could lead to a wrong answer.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

10 examples of friction in our daily life

