
Let $0\le \theta \le \dfrac{\pi }{2}$ and $x=X\cos \theta +Y\sin \theta ,y=X\sin \theta -Y\cos \theta $ such that ${{x}^{2}}+4xy+{{y}^{2}}=a{{X}^{2}}+b{{Y}^{2}},$ where a, b are constants then
A. a=-1, b=3
B. $\theta =\dfrac{\pi }{4}$
C. a=3, b=-1
D. $\theta =\dfrac{\pi }{3}$
Answer
507.6k+ views
Hint: We solve this question by substituting the values of x and y given, in the left-hand side of the expression ${{x}^{2}}+4xy+{{y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}.$ Then we simplify the terms on the left-hand side to get only the terms ${{X}^{2}}$ and ${{Y}^{2}}$ in terms of coefficients which should equate to a and b. If we find additional terms, we equate it to 0 and obtain the answer.
Complete step by step answer:
In order to solve this question, let us consider the given values of x and y. We know from the question that,
$\Rightarrow x=X\cos \theta +Y\sin \theta $
$\Rightarrow y=X\sin \theta -Y\cos \theta $
Now, we are also given the expression,
$\Rightarrow {{x}^{2}}+4xy+{{y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}$
We shall solve only the left-hand side first. Substituting the two values for x and y in the above equation on the left-hand side,
$\Rightarrow {{\left( X\cos \theta +Y\sin \theta \right)}^{2}}+4\left( X\cos \theta +Y\sin \theta \right)\left( X\sin \theta -Y\cos \theta \right)+{{\left( X\sin \theta -Y\cos \theta \right)}^{2}}$
Expanding the terms by using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab,$ and multiplying the middle terms together,
$\begin{align}
& \Rightarrow {{X}^{2}}{{\cos }^{2}}\theta +{{Y}^{2}}{{\sin }^{2}}\theta +2XY\sin \theta \cos \theta +4\left( {{X}^{2}}\sin \theta \cos \theta +XY{{\sin }^{2}}\theta -XY{{\cos }^{2}}\theta -{{Y}^{2}}\sin \theta \cos \theta \right)+ \\
& \text{ }{{X}^{2}}{{\sin }^{2}}\theta +{{Y}^{2}}{{\cos }^{2}}\theta -2XY\sin \theta \cos \theta \\
\end{align}$
Now, we can cancel the third term and the last term as they are the subtraction of the same terms. Then we group ${{X}^{2}},{{Y}^{2}},XY$ terms separately,
$\Rightarrow {{X}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta -4\sin \theta \cos \theta \right)+XY\left( 4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta \right)$
Now, we know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1.$ Using this in the above equation,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( 4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta \right)$
We also know the relation that $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta .$ Using this for the third term,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( -4\cos 2\theta \right)$
Now, we shall compare both sides of the equation,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( -4\cos 2\theta \right)=a{{X}^{2}}+b{{Y}^{2}}$
As we can see, there are only terms for ${{X}^{2}}$ and ${{Y}^{2}}$ on the right-hand side. Since the right-hand side does not have any $XY$ terms, we equate the $XY$ term on the left-hand side to 0.
$\Rightarrow \left( -4\cos 2\theta \right)=0$
Dividing both sides by -4,
$\Rightarrow \cos 2\theta =0$
We know $\cos x=0$ implies that $x=\dfrac{\pi }{2}$ or any multiple of it. Using the first value of it here,
$\Rightarrow 2\theta =\dfrac{\pi }{2}$
Dividing both sides by 2,
$\Rightarrow \theta =\dfrac{\pi }{4}$
Hence, the value of $\theta =\dfrac{\pi }{4}.$ We now substitute this for the left-hand side of the equation to obtain the values of a and b.
$\Rightarrow {{X}^{2}}\left( 1+4\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4} \right)+{{Y}^{2}}\left( 1-4\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4} \right)=a{{X}^{2}}+b{{Y}^{2}}$
We know the value of $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.$ Using this in the above equation,
$\Rightarrow {{X}^{2}}\left( 1+4.\dfrac{1}{\sqrt{2}}.\dfrac{1}{\sqrt{2}} \right)+{{Y}^{2}}\left( 1-4.\dfrac{1}{\sqrt{2}}.\dfrac{1}{\sqrt{2}} \right)=a{{X}^{2}}+b{{Y}^{2}}$
Multiplying the three terms gives us 2,
$\Rightarrow {{X}^{2}}\left( 1+2 \right)+{{Y}^{2}}\left( 1-2 \right)=a{{X}^{2}}+b{{Y}^{2}}$
Adding and subtracting the terms in the brackets,
$\Rightarrow 3{{X}^{2}}-1{{Y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}$
Hence, the values of a=3 and b=-1.
So, the correct answer is “Option B and C”.
Note: We need to know the basic trigonometric formulae and values of standard angles in order to solve such sum. Care must be taken while expanding and simplifying the terms as students tend to miss out a term or two during calculation and it could lead to a wrong answer.
Complete step by step answer:
In order to solve this question, let us consider the given values of x and y. We know from the question that,
$\Rightarrow x=X\cos \theta +Y\sin \theta $
$\Rightarrow y=X\sin \theta -Y\cos \theta $
Now, we are also given the expression,
$\Rightarrow {{x}^{2}}+4xy+{{y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}$
We shall solve only the left-hand side first. Substituting the two values for x and y in the above equation on the left-hand side,
$\Rightarrow {{\left( X\cos \theta +Y\sin \theta \right)}^{2}}+4\left( X\cos \theta +Y\sin \theta \right)\left( X\sin \theta -Y\cos \theta \right)+{{\left( X\sin \theta -Y\cos \theta \right)}^{2}}$
Expanding the terms by using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab,$ and multiplying the middle terms together,
$\begin{align}
& \Rightarrow {{X}^{2}}{{\cos }^{2}}\theta +{{Y}^{2}}{{\sin }^{2}}\theta +2XY\sin \theta \cos \theta +4\left( {{X}^{2}}\sin \theta \cos \theta +XY{{\sin }^{2}}\theta -XY{{\cos }^{2}}\theta -{{Y}^{2}}\sin \theta \cos \theta \right)+ \\
& \text{ }{{X}^{2}}{{\sin }^{2}}\theta +{{Y}^{2}}{{\cos }^{2}}\theta -2XY\sin \theta \cos \theta \\
\end{align}$
Now, we can cancel the third term and the last term as they are the subtraction of the same terms. Then we group ${{X}^{2}},{{Y}^{2}},XY$ terms separately,
$\Rightarrow {{X}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta -4\sin \theta \cos \theta \right)+XY\left( 4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta \right)$
Now, we know that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1.$ Using this in the above equation,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( 4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta \right)$
We also know the relation that $\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta .$ Using this for the third term,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( -4\cos 2\theta \right)$
Now, we shall compare both sides of the equation,
$\Rightarrow {{X}^{2}}\left( 1+4\sin \theta \cos \theta \right)+{{Y}^{2}}\left( 1-4\sin \theta \cos \theta \right)+XY\left( -4\cos 2\theta \right)=a{{X}^{2}}+b{{Y}^{2}}$
As we can see, there are only terms for ${{X}^{2}}$ and ${{Y}^{2}}$ on the right-hand side. Since the right-hand side does not have any $XY$ terms, we equate the $XY$ term on the left-hand side to 0.
$\Rightarrow \left( -4\cos 2\theta \right)=0$
Dividing both sides by -4,
$\Rightarrow \cos 2\theta =0$
We know $\cos x=0$ implies that $x=\dfrac{\pi }{2}$ or any multiple of it. Using the first value of it here,
$\Rightarrow 2\theta =\dfrac{\pi }{2}$
Dividing both sides by 2,
$\Rightarrow \theta =\dfrac{\pi }{4}$
Hence, the value of $\theta =\dfrac{\pi }{4}.$ We now substitute this for the left-hand side of the equation to obtain the values of a and b.
$\Rightarrow {{X}^{2}}\left( 1+4\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4} \right)+{{Y}^{2}}\left( 1-4\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4} \right)=a{{X}^{2}}+b{{Y}^{2}}$
We know the value of $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.$ Using this in the above equation,
$\Rightarrow {{X}^{2}}\left( 1+4.\dfrac{1}{\sqrt{2}}.\dfrac{1}{\sqrt{2}} \right)+{{Y}^{2}}\left( 1-4.\dfrac{1}{\sqrt{2}}.\dfrac{1}{\sqrt{2}} \right)=a{{X}^{2}}+b{{Y}^{2}}$
Multiplying the three terms gives us 2,
$\Rightarrow {{X}^{2}}\left( 1+2 \right)+{{Y}^{2}}\left( 1-2 \right)=a{{X}^{2}}+b{{Y}^{2}}$
Adding and subtracting the terms in the brackets,
$\Rightarrow 3{{X}^{2}}-1{{Y}^{2}}=a{{X}^{2}}+b{{Y}^{2}}$
Hence, the values of a=3 and b=-1.
So, the correct answer is “Option B and C”.
Note: We need to know the basic trigonometric formulae and values of standard angles in order to solve such sum. Care must be taken while expanding and simplifying the terms as students tend to miss out a term or two during calculation and it could lead to a wrong answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

