
${{K}_{p}}$ for a reaction at $25{}^\circ C$ is 10 atm. The activation energy for forward and reverse reactions are 12 and 20 kJ/mol respectively. The ${{K}_{c}}$for the reaction at $40{}^\circ C$will be
(A) $4.33\times {{10}^{-1}}M$
(B) $3.33\times {{10}^{-2}}M$
(C) $3.33\times {{10}^{-1}}M$
(D) $4.33\times {{10}^{-2}}M$
Answer
589.5k+ views
Hint: To attempt this question, first calculate the ${{K}_{c}}$ value at$25{}^\circ C$, and then calculate ${{K}_{c}}$for the reaction at $40{}^\circ C$. Use the Van't Hoff equation for the same.
Complete step by step solution:
Given,
Activation energy for forward reaction \[\left( {{E}_{f}} \right)=12kJ/mol\]
Activation energy for backward reaction \[\left( {{E}_{b}} \right)=20kJ/mol\]
${{K}_{p}}$at $25{}^\circ C$ = 10 atm and $\Delta n=1$.
Therefore, now calculate the value of ${{K}_{c}}$.
\[{{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}={{K}_{c}}\left( RT \right)\]
$\Rightarrow {{K}_{c}}=\dfrac{{{K}_{p}}}{RT}=\dfrac{10}{0.0821\times 298}=0.4M$
(Temperature values are placed after converting into kelvin, $25{}^\circ C+273=298K$ )
For calculating ${{K}_{c}}$ for the reaction use the vant’s Hoff equation:
\[\log \dfrac{{{({{K}_{c}})}_{2}}}{{{({{K}_{c}})}_{1}}} =\dfrac{\Delta H}{2.303R}\left( \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right)\]
Now, to calculate the value of $\Delta H$ we need the value of activation energy of forward and backward reaction.
$\Delta H={{E}_{f}}-{{E}_{b}}=12-20=-8kJ/mol=-8000J/mol$
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{{{({{K}_{c}})}_{298K}}} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{313-298}{313\times 298} \right)\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{15}{93870} \right)\]\[\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-120000}{1797342.22}\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =-0.0667\]
Taking antilog both sides, we get
\[\dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =1{{0}^{-0.0667}}\]
\[{{({{K}_{c}})}_{313K}} =0.4\times 0.8576=0.3430M=3.430\times 1{{0}^{-1}}M\]
So, the answer is option ©.
Note: While solving the question, remember to convert temperature from degree Celsius into Kelvin. Also, notice that the${{K}_{p}}$ value is given in atmosphere so to calculate ${{K}_{c}}$ use the value of universal gas constant (R) in atm not in Joules, i.e. 0.082 $L\cdot atm/K\cdot mol$not 8.314$J/K\cdot mol$.
Also, while calculating the${{K}_{c}}$ value at 313 K, either convert $\Delta H$ in Joules per mole or change gas constant (R) in $kJ/K\cdot mol$
Complete step by step solution:
Given,
Activation energy for forward reaction \[\left( {{E}_{f}} \right)=12kJ/mol\]
Activation energy for backward reaction \[\left( {{E}_{b}} \right)=20kJ/mol\]
${{K}_{p}}$at $25{}^\circ C$ = 10 atm and $\Delta n=1$.
Therefore, now calculate the value of ${{K}_{c}}$.
\[{{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}={{K}_{c}}\left( RT \right)\]
$\Rightarrow {{K}_{c}}=\dfrac{{{K}_{p}}}{RT}=\dfrac{10}{0.0821\times 298}=0.4M$
(Temperature values are placed after converting into kelvin, $25{}^\circ C+273=298K$ )
For calculating ${{K}_{c}}$ for the reaction use the vant’s Hoff equation:
\[\log \dfrac{{{({{K}_{c}})}_{2}}}{{{({{K}_{c}})}_{1}}} =\dfrac{\Delta H}{2.303R}\left( \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right)\]
Now, to calculate the value of $\Delta H$ we need the value of activation energy of forward and backward reaction.
$\Delta H={{E}_{f}}-{{E}_{b}}=12-20=-8kJ/mol=-8000J/mol$
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{{{({{K}_{c}})}_{298K}}} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{313-298}{313\times 298} \right)\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{15}{93870} \right)\]\[\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-120000}{1797342.22}\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =-0.0667\]
Taking antilog both sides, we get
\[\dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =1{{0}^{-0.0667}}\]
\[{{({{K}_{c}})}_{313K}} =0.4\times 0.8576=0.3430M=3.430\times 1{{0}^{-1}}M\]
So, the answer is option ©.
Note: While solving the question, remember to convert temperature from degree Celsius into Kelvin. Also, notice that the${{K}_{p}}$ value is given in atmosphere so to calculate ${{K}_{c}}$ use the value of universal gas constant (R) in atm not in Joules, i.e. 0.082 $L\cdot atm/K\cdot mol$not 8.314$J/K\cdot mol$.
Also, while calculating the${{K}_{c}}$ value at 313 K, either convert $\Delta H$ in Joules per mole or change gas constant (R) in $kJ/K\cdot mol$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

