
${{K}_{p}}$ for a reaction at $25{}^\circ C$ is 10 atm. The activation energy for forward and reverse reactions are 12 and 20 kJ/mol respectively. The ${{K}_{c}}$for the reaction at $40{}^\circ C$will be
(A) $4.33\times {{10}^{-1}}M$
(B) $3.33\times {{10}^{-2}}M$
(C) $3.33\times {{10}^{-1}}M$
(D) $4.33\times {{10}^{-2}}M$
Answer
575.1k+ views
Hint: To attempt this question, first calculate the ${{K}_{c}}$ value at$25{}^\circ C$, and then calculate ${{K}_{c}}$for the reaction at $40{}^\circ C$. Use the Van't Hoff equation for the same.
Complete step by step solution:
Given,
Activation energy for forward reaction \[\left( {{E}_{f}} \right)=12kJ/mol\]
Activation energy for backward reaction \[\left( {{E}_{b}} \right)=20kJ/mol\]
${{K}_{p}}$at $25{}^\circ C$ = 10 atm and $\Delta n=1$.
Therefore, now calculate the value of ${{K}_{c}}$.
\[{{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}={{K}_{c}}\left( RT \right)\]
$\Rightarrow {{K}_{c}}=\dfrac{{{K}_{p}}}{RT}=\dfrac{10}{0.0821\times 298}=0.4M$
(Temperature values are placed after converting into kelvin, $25{}^\circ C+273=298K$ )
For calculating ${{K}_{c}}$ for the reaction use the vant’s Hoff equation:
\[\log \dfrac{{{({{K}_{c}})}_{2}}}{{{({{K}_{c}})}_{1}}} =\dfrac{\Delta H}{2.303R}\left( \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right)\]
Now, to calculate the value of $\Delta H$ we need the value of activation energy of forward and backward reaction.
$\Delta H={{E}_{f}}-{{E}_{b}}=12-20=-8kJ/mol=-8000J/mol$
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{{{({{K}_{c}})}_{298K}}} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{313-298}{313\times 298} \right)\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{15}{93870} \right)\]\[\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-120000}{1797342.22}\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =-0.0667\]
Taking antilog both sides, we get
\[\dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =1{{0}^{-0.0667}}\]
\[{{({{K}_{c}})}_{313K}} =0.4\times 0.8576=0.3430M=3.430\times 1{{0}^{-1}}M\]
So, the answer is option ©.
Note: While solving the question, remember to convert temperature from degree Celsius into Kelvin. Also, notice that the${{K}_{p}}$ value is given in atmosphere so to calculate ${{K}_{c}}$ use the value of universal gas constant (R) in atm not in Joules, i.e. 0.082 $L\cdot atm/K\cdot mol$not 8.314$J/K\cdot mol$.
Also, while calculating the${{K}_{c}}$ value at 313 K, either convert $\Delta H$ in Joules per mole or change gas constant (R) in $kJ/K\cdot mol$
Complete step by step solution:
Given,
Activation energy for forward reaction \[\left( {{E}_{f}} \right)=12kJ/mol\]
Activation energy for backward reaction \[\left( {{E}_{b}} \right)=20kJ/mol\]
${{K}_{p}}$at $25{}^\circ C$ = 10 atm and $\Delta n=1$.
Therefore, now calculate the value of ${{K}_{c}}$.
\[{{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}={{K}_{c}}\left( RT \right)\]
$\Rightarrow {{K}_{c}}=\dfrac{{{K}_{p}}}{RT}=\dfrac{10}{0.0821\times 298}=0.4M$
(Temperature values are placed after converting into kelvin, $25{}^\circ C+273=298K$ )
For calculating ${{K}_{c}}$ for the reaction use the vant’s Hoff equation:
\[\log \dfrac{{{({{K}_{c}})}_{2}}}{{{({{K}_{c}})}_{1}}} =\dfrac{\Delta H}{2.303R}\left( \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right)\]
Now, to calculate the value of $\Delta H$ we need the value of activation energy of forward and backward reaction.
$\Delta H={{E}_{f}}-{{E}_{b}}=12-20=-8kJ/mol=-8000J/mol$
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{{{({{K}_{c}})}_{298K}}} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{313-298}{313\times 298} \right)\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{15}{93870} \right)\]\[\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-120000}{1797342.22}\]
\[\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =-0.0667\]
Taking antilog both sides, we get
\[\dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =1{{0}^{-0.0667}}\]
\[{{({{K}_{c}})}_{313K}} =0.4\times 0.8576=0.3430M=3.430\times 1{{0}^{-1}}M\]
So, the answer is option ©.
Note: While solving the question, remember to convert temperature from degree Celsius into Kelvin. Also, notice that the${{K}_{p}}$ value is given in atmosphere so to calculate ${{K}_{c}}$ use the value of universal gas constant (R) in atm not in Joules, i.e. 0.082 $L\cdot atm/K\cdot mol$not 8.314$J/K\cdot mol$.
Also, while calculating the${{K}_{c}}$ value at 313 K, either convert $\Delta H$ in Joules per mole or change gas constant (R) in $kJ/K\cdot mol$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

