
Kinetic energy of a particle is increased by 300%. Find the percentage increase in its momentum.
Answer
520.8k+ views
Hint: When we say that the kinetic energy of the particle is increased by 300%, it means that the new kinetic energy is equal to 4 times the initial kinetic energy. Use the formulas of momentum (p=mv) and kinetic energy ($K=\dfrac{1}{2}m{{v}^{2}}$) and find relation between momentum and kinetic energy. Then using this relation, find the relation (ratio) between the new momentum and the initial momentum.
Formula used:
p=mv
$K=\dfrac{1}{2}m{{v}^{2}}$
Complete step by step answer:
When a particle of mass m is in motion with a velocity v then we say that it has some momentum. Momentum of a particle is defined as the product of its mass and its velocity.
i.e. p = mv … (i)
We also say that the moving body possesses some amount of energy called kinetic energy. The kinetic energy of the body is given as $K=\dfrac{1}{2}m{{v}^{2}}$ ….. (ii).
Now, divide equation (ii) by equation (i).
Hence, we get
$\dfrac{K}{p}=\dfrac{\dfrac{1}{2}m{{v}^{2}}}{mv}$
This implies, $\dfrac{K}{p}=\dfrac{v}{2}$
Therefore,
$K=\dfrac{vp}{2}$ …. (iii).
The velocity or speed of the particle may change with time. However, the mass of the particle will remain constant. Therefore, we have to write v in terms of m in equation (iii).
For this we will use equation (i). We can write equation (i) as:
$v=\dfrac{p}{m}$ …. (iv).
Substitute the value of v from equation (iii).
$\Rightarrow K=\left( \dfrac{p}{m} \right)\dfrac{p}{2}$
$\Rightarrow K=\dfrac{{{p}^{2}}}{2m}$ …. (v).
Hence, we got a relation between kinetic energy and momentum of a particle.
It is given that the kinetic energy (K) of the particle increases by 300%. This means it has become 4 times the initial kinetic energy (K). Let the new kinetic energy be K’.
Therefore, K’=4K.
Let the new momentum of the particle be p’.
Therefore, according to equation,
$K'=\dfrac{p{{'}^{2}}}{2m}$.
$\Rightarrow K'=4K=\dfrac{p{{'}^{2}}}{2m}$
And by substituting the value of K from equation (v) we get,
$\Rightarrow 4\left( \dfrac{{{p}^{2}}}{2m} \right)=\dfrac{p{{'}^{2}}}{2m}$.
$\Rightarrow 4{{p}^{2}}=p{{'}^{2}}$
$\Rightarrow p'=2p$
This means that the new momentum of the particle is two times the initial momentum, which means that the momentum of the particle is increased by 100%.
Note:
Note that momentum is a vector quantity and therefore v in the equation of momentum is velocity of the particle. However, energy is a scalar quantity. Hence, v in the equation of kinetic energy is speed i.e. magnitude of the velocity of the particle.
Formula used:
p=mv
$K=\dfrac{1}{2}m{{v}^{2}}$
Complete step by step answer:
When a particle of mass m is in motion with a velocity v then we say that it has some momentum. Momentum of a particle is defined as the product of its mass and its velocity.
i.e. p = mv … (i)
We also say that the moving body possesses some amount of energy called kinetic energy. The kinetic energy of the body is given as $K=\dfrac{1}{2}m{{v}^{2}}$ ….. (ii).
Now, divide equation (ii) by equation (i).
Hence, we get
$\dfrac{K}{p}=\dfrac{\dfrac{1}{2}m{{v}^{2}}}{mv}$
This implies, $\dfrac{K}{p}=\dfrac{v}{2}$
Therefore,
$K=\dfrac{vp}{2}$ …. (iii).
The velocity or speed of the particle may change with time. However, the mass of the particle will remain constant. Therefore, we have to write v in terms of m in equation (iii).
For this we will use equation (i). We can write equation (i) as:
$v=\dfrac{p}{m}$ …. (iv).
Substitute the value of v from equation (iii).
$\Rightarrow K=\left( \dfrac{p}{m} \right)\dfrac{p}{2}$
$\Rightarrow K=\dfrac{{{p}^{2}}}{2m}$ …. (v).
Hence, we got a relation between kinetic energy and momentum of a particle.
It is given that the kinetic energy (K) of the particle increases by 300%. This means it has become 4 times the initial kinetic energy (K). Let the new kinetic energy be K’.
Therefore, K’=4K.
Let the new momentum of the particle be p’.
Therefore, according to equation,
$K'=\dfrac{p{{'}^{2}}}{2m}$.
$\Rightarrow K'=4K=\dfrac{p{{'}^{2}}}{2m}$
And by substituting the value of K from equation (v) we get,
$\Rightarrow 4\left( \dfrac{{{p}^{2}}}{2m} \right)=\dfrac{p{{'}^{2}}}{2m}$.
$\Rightarrow 4{{p}^{2}}=p{{'}^{2}}$
$\Rightarrow p'=2p$
This means that the new momentum of the particle is two times the initial momentum, which means that the momentum of the particle is increased by 100%.
Note:
Note that momentum is a vector quantity and therefore v in the equation of momentum is velocity of the particle. However, energy is a scalar quantity. Hence, v in the equation of kinetic energy is speed i.e. magnitude of the velocity of the particle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

