
Is \[g=\left\{ \left( 1,1 \right),\left( 2,3 \right),\left( 3,5 \right),\left( 4,7 \right) \right\}\] a function? If this is described by function \[g(x)=\alpha x+\beta \] then what values should be assigned to \[\alpha ,\beta \] ? Find the value of \[\alpha +\beta \]
Answer
605.1k+ views
Hint: To solve the question, we have to check whether g is function, which can be checked by using the property of function that states for each input value of domain has only one output value in the range. To calculate the constant values, use the data of the set of g.
Complete step-by-step answer:
We know that a function is a relation for which each input value of a domain has only one output value in the range.
The domain of \[g=\left\{ 1,2,3,4 \right\}\] and the range of \[g=\left\{ 1,3,5,7 \right\}\]
Each input value of the domain of g has only one output value in the range of g. Thus, \[g=\left\{ \left( 1,1 \right),\left( 2,3 \right),\left( 3,5 \right),\left( 4,7 \right) \right\}\] is a function.
Given that the function of g is \[g(x)=\alpha x+\beta \]
The values of set g satisfy the above function. Thus, by substituting the input values of (1,1) and (2,3) we get
\[g(1)=\alpha (1)+\beta \]
\[\Rightarrow g(1)=\alpha +\beta \]
\[g(2)=\alpha (2)+\beta \]
\[\Rightarrow g(2)=2\alpha +\beta \]
By substituting the output values of (1,1) and (2,3) we get
\[1=\alpha +\beta \]
\[3=2\alpha +\beta \] …. (1)
By subtracting the above equations, we get
\[3-1=2\alpha +\beta -(\alpha +\beta )\]
\[2=2\alpha +\beta -\alpha -\beta \]
\[\Rightarrow \alpha =2\]
By substituting the value of \[\alpha =2\] in equation (1) we get
\[3=2(2)+\beta \]
\[3=4+\beta \]
\[\beta =3-4\]
\[\Rightarrow \beta =-1\]
The value of \[\alpha +\beta \] = 2 – 1 = 1
Thus, the values of \[\alpha ,\beta ,\alpha +\beta \] are 2, -1, 1 respectively.
Note: The possibility of mistake can be not able to apply the concept of condition of a relation to be a function. The other possibility of mistake can be not applying the set of numbers of function to calculate the values of \[\alpha ,\beta ,\alpha +\beta \]
Complete step-by-step answer:
We know that a function is a relation for which each input value of a domain has only one output value in the range.
The domain of \[g=\left\{ 1,2,3,4 \right\}\] and the range of \[g=\left\{ 1,3,5,7 \right\}\]
Each input value of the domain of g has only one output value in the range of g. Thus, \[g=\left\{ \left( 1,1 \right),\left( 2,3 \right),\left( 3,5 \right),\left( 4,7 \right) \right\}\] is a function.
Given that the function of g is \[g(x)=\alpha x+\beta \]
The values of set g satisfy the above function. Thus, by substituting the input values of (1,1) and (2,3) we get
\[g(1)=\alpha (1)+\beta \]
\[\Rightarrow g(1)=\alpha +\beta \]
\[g(2)=\alpha (2)+\beta \]
\[\Rightarrow g(2)=2\alpha +\beta \]
By substituting the output values of (1,1) and (2,3) we get
\[1=\alpha +\beta \]
\[3=2\alpha +\beta \] …. (1)
By subtracting the above equations, we get
\[3-1=2\alpha +\beta -(\alpha +\beta )\]
\[2=2\alpha +\beta -\alpha -\beta \]
\[\Rightarrow \alpha =2\]
By substituting the value of \[\alpha =2\] in equation (1) we get
\[3=2(2)+\beta \]
\[3=4+\beta \]
\[\beta =3-4\]
\[\Rightarrow \beta =-1\]
The value of \[\alpha +\beta \] = 2 – 1 = 1
Thus, the values of \[\alpha ,\beta ,\alpha +\beta \] are 2, -1, 1 respectively.
Note: The possibility of mistake can be not able to apply the concept of condition of a relation to be a function. The other possibility of mistake can be not applying the set of numbers of function to calculate the values of \[\alpha ,\beta ,\alpha +\beta \]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

