
Ionization energy of \[H{e^ + }\]is \[19.6 \times 10 ^{- 18}\;J.atom^{- 1}\]. The energy of the first stationary state (n=1) of is:
A. \[4.41 \times {10^{ - 16}}J.ato{m^{ - 1}}\]
B. \[ - 4.41 \times {10^{ - 17}}J.ato{m^{ - 1}}\]
C. \[ - 2.2 \times {10^{ - 15}}J.ato{m^{ - 1}}\]
D. \[8.82 \times {10^{ - 17}}J.ato{m^{ - 1}}\]
Answer
554.4k+ views
Hint: Ionisation energy is straightforward terms may be defined as a measurement of the problem in removal of an electron from an atom or ion or the tendency of an atom or ion to give up an electron. The lack of electrons normally happens when it is in a ground state of the chemical species.
Explanation:
Ionization energy is the amount of energy that an isolated, gaseous atom in the ground state should absorb to discharge an electron, resulting in a cation.
When thinking about a first of all neutral atom, expelling the primary electron would require much less energy than expelling the second one, the second one would require much less energy than the third, and so on. Each successive electron calls for extra energy to be released in reaction. This is due to the fact after the primary electron is lost, the net charge of the atom turns into positive, and the negative forces of an electron might be attracted to the positive charge of the newly formed ion. The extra electrons which are lost, the more positive this ion might be, the more difficult it is to split the electrons from the atom.
Complete step by step solution:
Since we know that,
\[\dfrac{{I{E_{L{i^{2 + }}}}}}{{I{E_{H{e^ + }}}}} = {\left( {\dfrac{{{Z_{L{i^{2 + }}}}}}{{{Z_{H{e^ + }}}}}} \right)^2} = \dfrac{9}{4}\]
\[I{E_{L{i^{2 + }}}} = \dfrac{9}{4} \times I{E_{H{e^ + }}}\]
\[I{E_{L{i^{2 + }}}} = \dfrac{9}{4} \times 19.6 \times {10^{ - 18}}\]
\[I{E_{L{i^{2 + }}}} = - 4.41 \times {10^{ - 17}}J/atom\]
Therefore, the correct answer is option B. \[I{E_{L{i^{2 + }}}} = - 4.41 \times {10^{ - 17}}J/atom\]
Note:
Ionisation energies are dependent on the atomic radius. Since, going from right side to left side on the periodic table, the atomic radius has an increase, and the ionization energy also increases from left to right in the periodic table and up side the groups.
Explanation:
Ionization energy is the amount of energy that an isolated, gaseous atom in the ground state should absorb to discharge an electron, resulting in a cation.
When thinking about a first of all neutral atom, expelling the primary electron would require much less energy than expelling the second one, the second one would require much less energy than the third, and so on. Each successive electron calls for extra energy to be released in reaction. This is due to the fact after the primary electron is lost, the net charge of the atom turns into positive, and the negative forces of an electron might be attracted to the positive charge of the newly formed ion. The extra electrons which are lost, the more positive this ion might be, the more difficult it is to split the electrons from the atom.
Complete step by step solution:
Since we know that,
\[\dfrac{{I{E_{L{i^{2 + }}}}}}{{I{E_{H{e^ + }}}}} = {\left( {\dfrac{{{Z_{L{i^{2 + }}}}}}{{{Z_{H{e^ + }}}}}} \right)^2} = \dfrac{9}{4}\]
\[I{E_{L{i^{2 + }}}} = \dfrac{9}{4} \times I{E_{H{e^ + }}}\]
\[I{E_{L{i^{2 + }}}} = \dfrac{9}{4} \times 19.6 \times {10^{ - 18}}\]
\[I{E_{L{i^{2 + }}}} = - 4.41 \times {10^{ - 17}}J/atom\]
Therefore, the correct answer is option B. \[I{E_{L{i^{2 + }}}} = - 4.41 \times {10^{ - 17}}J/atom\]
Note:
Ionisation energies are dependent on the atomic radius. Since, going from right side to left side on the periodic table, the atomic radius has an increase, and the ionization energy also increases from left to right in the periodic table and up side the groups.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

