
Integration of $\int {\dfrac{{dx}}{{x - \sqrt x }}} $is equal to:
A. $2\log \left| {\sqrt x - 1} \right| + C$
B. $2\log \left| {\sqrt x + 1} \right| + C$
C. $\log \left| {\sqrt x - 1} \right| + C$
D. $\dfrac{1}{2}\log \left| {\sqrt x + 1} \right| + C$
E. $\dfrac{1}{2}\log \left| {\sqrt x - 1} \right| + C$
Answer
476.4k+ views
Hint: according to the question we have to find the integration of $\int {\dfrac{{dx}}{{x - \sqrt x }}} $.
So, first of all we have to let$\sqrt x $= u then we have to differentiate both terms with respect to $x$with the help of the formula that is mentioned below.
Formula used:
$\dfrac{d}{{dx}}\sqrt x = \dfrac{1}{{2\sqrt x }}...........................(A)$
Now, we have to put all the value of $\sqrt x $and $dx$in the given expression$\int {\dfrac{{dx}}{{x - \sqrt x }}} $
After that we have to use the integration formula of $\dfrac{1}{{(a + 1)}}da$that is mentioned below.
$\int {\dfrac{1}{{a + 1}}} da$$ = \log \left| {a + 1} \right| + C............................(B)$
Complete answer:
Step 1: First of all we have to let the $\sqrt x $=u
Now, differentiate both terms with respect to$x$
$ \Rightarrow \dfrac{d}{{dx}}\sqrt x = \dfrac{d}{{dx}}\left( u \right)$
Now, we have to apply the formula (A) that is mentioned in the solution hint.
$
\Rightarrow \dfrac{1}{{2\sqrt x }} = \dfrac{{du}}{{dx}} \\
\Rightarrow dx = 2\sqrt x du........................(1) \\
$
Step 2: Now, we put the value of $\sqrt x $=u in the expression (1) obtained in step 1
$ \Rightarrow dx = 2udu$
Step 3: Now, we put all values obtained in step 1 and step 2 in the given expression $\int {\dfrac{{dx}}{{x - \sqrt x }}} $
$
\Rightarrow \int {\dfrac{{2udu}}{{(u + {u^2})}}} \\
\Rightarrow \int {\dfrac{{2udu}}{{u(1 + u)}}} \\
\Rightarrow \int {\dfrac{{2du}}{{(1 + u)}}} \\
$
Step 4: Now, we have to apply the formula (B) in the expression mentioned in the step 3.
$ \Rightarrow 2\log \left| {u + 1} \right| + C$
Now, put the value of $u$ in terms of $x$.
$ \Rightarrow 2\log \left| {\sqrt x + 1} \right| + C$
The integrated values of the given expression $\int {\dfrac{{dx}}{{x - \sqrt x }}} $ $ = 2\log \left| {\sqrt x + 1} \right| + C$.
Note:
It is necessary that we have to let the term $\sqrt x $= u and then we have to find the differentiation of the term we let to simplify the expression.
It is necessary that we have let x as ${u^2}$ and then we have to substitute the value in the given expression to find the integration.
So, first of all we have to let$\sqrt x $= u then we have to differentiate both terms with respect to $x$with the help of the formula that is mentioned below.
Formula used:
$\dfrac{d}{{dx}}\sqrt x = \dfrac{1}{{2\sqrt x }}...........................(A)$
Now, we have to put all the value of $\sqrt x $and $dx$in the given expression$\int {\dfrac{{dx}}{{x - \sqrt x }}} $
After that we have to use the integration formula of $\dfrac{1}{{(a + 1)}}da$that is mentioned below.
$\int {\dfrac{1}{{a + 1}}} da$$ = \log \left| {a + 1} \right| + C............................(B)$
Complete answer:
Step 1: First of all we have to let the $\sqrt x $=u
Now, differentiate both terms with respect to$x$
$ \Rightarrow \dfrac{d}{{dx}}\sqrt x = \dfrac{d}{{dx}}\left( u \right)$
Now, we have to apply the formula (A) that is mentioned in the solution hint.
$
\Rightarrow \dfrac{1}{{2\sqrt x }} = \dfrac{{du}}{{dx}} \\
\Rightarrow dx = 2\sqrt x du........................(1) \\
$
Step 2: Now, we put the value of $\sqrt x $=u in the expression (1) obtained in step 1
$ \Rightarrow dx = 2udu$
Step 3: Now, we put all values obtained in step 1 and step 2 in the given expression $\int {\dfrac{{dx}}{{x - \sqrt x }}} $
$
\Rightarrow \int {\dfrac{{2udu}}{{(u + {u^2})}}} \\
\Rightarrow \int {\dfrac{{2udu}}{{u(1 + u)}}} \\
\Rightarrow \int {\dfrac{{2du}}{{(1 + u)}}} \\
$
Step 4: Now, we have to apply the formula (B) in the expression mentioned in the step 3.
$ \Rightarrow 2\log \left| {u + 1} \right| + C$
Now, put the value of $u$ in terms of $x$.
$ \Rightarrow 2\log \left| {\sqrt x + 1} \right| + C$
The integrated values of the given expression $\int {\dfrac{{dx}}{{x - \sqrt x }}} $ $ = 2\log \left| {\sqrt x + 1} \right| + C$.
Note:
It is necessary that we have to let the term $\sqrt x $= u and then we have to find the differentiation of the term we let to simplify the expression.
It is necessary that we have let x as ${u^2}$ and then we have to substitute the value in the given expression to find the integration.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Who built the Grand Trunk Road AChandragupta Maurya class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

The reason why India adopted the policy of nonalignment class 11 social science CBSE

The plastids which are coloured green and colourless class 11 biology CBSE

Earth rotates in which direction A East to west B West class 11 physics CBSE

a Green plastids are called b Plant cell has a big class 11 biology CBSE
