
How do you integrate $x\ln {\left( x \right)^2}$?
Answer
537k+ views
Hint: Given the expression. We have to find the integral of the expression by applying integration by parts method. First, we will substitute the functions to the formula and apply the integration by parts. Then, find the differentiation of the logarithmic expression by applying the chain rule of differentiation. Then, we will integrate the expression by applying the power rule of integration. Then, we will apply the exponent rule of logarithms to multiply the exponent to the logarithm expression.
Formula used:
Integration by parts is given by:
$\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \left( {\int {f'\left( x \right)} \int {g\left( x \right)dx} } \right)dx$
The power rule of the integration is given by:
$\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}$
The chain rule of differentiation is given by:
$\dfrac{d}{{dx}}\left( {{x^{nx}}} \right) = n{x^{n - 1}}\dfrac{d}{{dx}}nx$
The differentiation of logarithmic function, $\ln \left( x \right)$ is given by:
$\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$
Complete step by step solution:
Let the integral be $\int {x\ln {{\left( x \right)}^2}} dx$
Here, $f\left( x \right) = \ln {\left( x \right)^2}$ and $g\left( x \right) = x$. Apply the integration by parts method to find the integral.
$ \Rightarrow \ln {\left( x \right)^2}\int {xdx} - \left( {\int {{{\left( {\ln {{\left( x \right)}^2}} \right)}^\prime }} \int {xdx} } \right)dx$
Apply the chain rule of differentiation to the expression ${\left( {\ln {{\left( x \right)}^2}} \right)^\prime }$
$ \Rightarrow {\left( {\ln {{\left( x \right)}^2}} \right)^\prime } = \dfrac{1}{{{x^2}}}\left( {2x} \right) = \dfrac{2}{x}$
$ \Rightarrow \ln {\left( x \right)^2}\int {xdx} - \left( {\int {\dfrac{2}{x}} \int {xdx} } \right)dx$
Apply the power rule of integration to the expression.
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - 2\left( {\int {\dfrac{1}{x}} \times \dfrac{{{x^2}}}{2}} \right)dx$
Simplify the expression.
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - 2\int {\dfrac{x}{2}dx} $
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - \int {xdx} $
Apply the power rule of integration to the expression, $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}$
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - \dfrac{{{x^2}}}{2}$
Rewrite the expression by applying exponent rule of logarithms to the expression $\ln {\left( x \right)^2}$, $\ln {a^b} = b\ln a$
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - \dfrac{{{x^2}}}{2} = 2\ln \left( x \right) \times \dfrac{{{x^2}}}{2} - \dfrac{{{x^2}}}{2}$
Cancel out the common terms, we get:
$ \Rightarrow {x^2}\ln \left( x \right) - \dfrac{{{x^2}}}{2} + C$
Final answer: Hence the value of the expression, $\int {x\ln {{\left( x \right)}^2}} dx$ is ${x^2}\ln \left( x \right) - \dfrac{{{x^2}}}{2} + C$
Note: Students please note that when the function is in the form of multiplication or division, then we will apply the integration by parts method. On applying the integration by parts, the values of $f\left( x \right)$ and $g\left( x \right)$ must be carefully chosen so that we find the function of LHS in the right hand side and we can combine them to simplify the expression.
Formula used:
Integration by parts is given by:
$\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \left( {\int {f'\left( x \right)} \int {g\left( x \right)dx} } \right)dx$
The power rule of the integration is given by:
$\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}$
The chain rule of differentiation is given by:
$\dfrac{d}{{dx}}\left( {{x^{nx}}} \right) = n{x^{n - 1}}\dfrac{d}{{dx}}nx$
The differentiation of logarithmic function, $\ln \left( x \right)$ is given by:
$\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$
Complete step by step solution:
Let the integral be $\int {x\ln {{\left( x \right)}^2}} dx$
Here, $f\left( x \right) = \ln {\left( x \right)^2}$ and $g\left( x \right) = x$. Apply the integration by parts method to find the integral.
$ \Rightarrow \ln {\left( x \right)^2}\int {xdx} - \left( {\int {{{\left( {\ln {{\left( x \right)}^2}} \right)}^\prime }} \int {xdx} } \right)dx$
Apply the chain rule of differentiation to the expression ${\left( {\ln {{\left( x \right)}^2}} \right)^\prime }$
$ \Rightarrow {\left( {\ln {{\left( x \right)}^2}} \right)^\prime } = \dfrac{1}{{{x^2}}}\left( {2x} \right) = \dfrac{2}{x}$
$ \Rightarrow \ln {\left( x \right)^2}\int {xdx} - \left( {\int {\dfrac{2}{x}} \int {xdx} } \right)dx$
Apply the power rule of integration to the expression.
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - 2\left( {\int {\dfrac{1}{x}} \times \dfrac{{{x^2}}}{2}} \right)dx$
Simplify the expression.
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - 2\int {\dfrac{x}{2}dx} $
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - \int {xdx} $
Apply the power rule of integration to the expression, $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}$
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - \dfrac{{{x^2}}}{2}$
Rewrite the expression by applying exponent rule of logarithms to the expression $\ln {\left( x \right)^2}$, $\ln {a^b} = b\ln a$
$ \Rightarrow \ln {\left( x \right)^2}\dfrac{{{x^2}}}{2} - \dfrac{{{x^2}}}{2} = 2\ln \left( x \right) \times \dfrac{{{x^2}}}{2} - \dfrac{{{x^2}}}{2}$
Cancel out the common terms, we get:
$ \Rightarrow {x^2}\ln \left( x \right) - \dfrac{{{x^2}}}{2} + C$
Final answer: Hence the value of the expression, $\int {x\ln {{\left( x \right)}^2}} dx$ is ${x^2}\ln \left( x \right) - \dfrac{{{x^2}}}{2} + C$
Note: Students please note that when the function is in the form of multiplication or division, then we will apply the integration by parts method. On applying the integration by parts, the values of $f\left( x \right)$ and $g\left( x \right)$ must be carefully chosen so that we find the function of LHS in the right hand side and we can combine them to simplify the expression.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

