
How to integrate $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$?
Answer
474.3k+ views
Hint: First, use trigonometry identity (II) to find the value of $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$ and put the value of $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$ in given integral. Then, use distributive property in integral. Next, use property (III) to split the integrals. The, solve the integral using integration formula (IV). Substitute all the values in the combined integral and get the required result.
Formula used:
1. The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
2. Trigonometric identity: $\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]$
3. The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
4. Integration formula: $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1$ and \[\int {\sin xdx} = - \cos x + C\]
Complete step by step solution:
We have to find $\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} $…(i)
Use identity $\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]$, by putting $A = 1 - 2x$ and $B = 1 + 2x$.
$\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( {1 - 2x + 1 + 2x} \right) + \sin \left( {1 - 2x - 1 - 2x} \right)} \right]$
Add the terms in the bracket.
$ \Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) + \sin \left( { - 4x} \right)} \right]$
Use identity $\sin \left( { - x} \right) = - \sin x$ in above equation.
$ \Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]$
Now, put the value of $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$ in integral (i).
$\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]dx} $…(ii)
Use distributive property in integral (ii).
$\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\left[ {\dfrac{1}{2}\sin \left( 2 \right) - \dfrac{1}{2}\sin \left( {4x} \right)} \right]dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\sin \left( 2 \right)dx} - \int {\dfrac{1}{2}\sin \left( {4x} \right)dx} \]…(iv)
Now, using the property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $
So, in above integral (iv), we can use above property
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)\int {dx} - \dfrac{1}{2}\int {\sin \left( {4x} \right)dx} \]…(v)
Now, using the integration formula $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1$ and \[\int {\sin xdx} = - \cos x + C\] in integration (v), we get
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)x - \dfrac{1}{2} \times \dfrac{{\cos \left( {4x} \right)}}{4} + C\]
It can be written as \[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C\].
Hence, \[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C\].
Note: To evaluate integrals of the form $\int {\sin mx\cos nxdx} $, $\int {\sin mx\sin nxdx} $, $\int {\cos mx} \cos nxdx$ and $\int {\cos mx\sin nxdx} $, we use the following trigonometric identities:
$2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
$2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)$
$2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
$2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
Formula used:
1. The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
2. Trigonometric identity: $\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]$
3. The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
4. Integration formula: $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1$ and \[\int {\sin xdx} = - \cos x + C\]
Complete step by step solution:
We have to find $\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} $…(i)
Use identity $\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]$, by putting $A = 1 - 2x$ and $B = 1 + 2x$.
$\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( {1 - 2x + 1 + 2x} \right) + \sin \left( {1 - 2x - 1 - 2x} \right)} \right]$
Add the terms in the bracket.
$ \Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) + \sin \left( { - 4x} \right)} \right]$
Use identity $\sin \left( { - x} \right) = - \sin x$ in above equation.
$ \Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]$
Now, put the value of $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$ in integral (i).
$\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]dx} $…(ii)
Use distributive property in integral (ii).
$\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\left[ {\dfrac{1}{2}\sin \left( 2 \right) - \dfrac{1}{2}\sin \left( {4x} \right)} \right]dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\sin \left( 2 \right)dx} - \int {\dfrac{1}{2}\sin \left( {4x} \right)dx} \]…(iv)
Now, using the property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $
So, in above integral (iv), we can use above property
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)\int {dx} - \dfrac{1}{2}\int {\sin \left( {4x} \right)dx} \]…(v)
Now, using the integration formula $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1$ and \[\int {\sin xdx} = - \cos x + C\] in integration (v), we get
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)x - \dfrac{1}{2} \times \dfrac{{\cos \left( {4x} \right)}}{4} + C\]
It can be written as \[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C\].
Hence, \[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C\].
Note: To evaluate integrals of the form $\int {\sin mx\cos nxdx} $, $\int {\sin mx\sin nxdx} $, $\int {\cos mx} \cos nxdx$ and $\int {\cos mx\sin nxdx} $, we use the following trigonometric identities:
$2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
$2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)$
$2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
$2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
