
How to integrate $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$?
Answer
521.4k+ views
Hint: First, use trigonometry identity (II) to find the value of $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$ and put the value of $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$ in given integral. Then, use distributive property in integral. Next, use property (III) to split the integrals. The, solve the integral using integration formula (IV). Substitute all the values in the combined integral and get the required result.
Formula used:
1. The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
2. Trigonometric identity: $\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]$
3. The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
4. Integration formula: $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1$ and \[\int {\sin xdx} = - \cos x + C\]
Complete step by step solution:
We have to find $\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} $…(i)
Use identity $\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]$, by putting $A = 1 - 2x$ and $B = 1 + 2x$.
$\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( {1 - 2x + 1 + 2x} \right) + \sin \left( {1 - 2x - 1 - 2x} \right)} \right]$
Add the terms in the bracket.
$ \Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) + \sin \left( { - 4x} \right)} \right]$
Use identity $\sin \left( { - x} \right) = - \sin x$ in above equation.
$ \Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]$
Now, put the value of $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$ in integral (i).
$\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]dx} $…(ii)
Use distributive property in integral (ii).
$\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\left[ {\dfrac{1}{2}\sin \left( 2 \right) - \dfrac{1}{2}\sin \left( {4x} \right)} \right]dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\sin \left( 2 \right)dx} - \int {\dfrac{1}{2}\sin \left( {4x} \right)dx} \]…(iv)
Now, using the property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $
So, in above integral (iv), we can use above property
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)\int {dx} - \dfrac{1}{2}\int {\sin \left( {4x} \right)dx} \]…(v)
Now, using the integration formula $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1$ and \[\int {\sin xdx} = - \cos x + C\] in integration (v), we get
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)x - \dfrac{1}{2} \times \dfrac{{\cos \left( {4x} \right)}}{4} + C\]
It can be written as \[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C\].
Hence, \[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C\].
Note: To evaluate integrals of the form $\int {\sin mx\cos nxdx} $, $\int {\sin mx\sin nxdx} $, $\int {\cos mx} \cos nxdx$ and $\int {\cos mx\sin nxdx} $, we use the following trigonometric identities:
$2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
$2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)$
$2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
$2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
Formula used:
1. The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
2. Trigonometric identity: $\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]$
3. The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
4. Integration formula: $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1$ and \[\int {\sin xdx} = - \cos x + C\]
Complete step by step solution:
We have to find $\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} $…(i)
Use identity $\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]$, by putting $A = 1 - 2x$ and $B = 1 + 2x$.
$\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( {1 - 2x + 1 + 2x} \right) + \sin \left( {1 - 2x - 1 - 2x} \right)} \right]$
Add the terms in the bracket.
$ \Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) + \sin \left( { - 4x} \right)} \right]$
Use identity $\sin \left( { - x} \right) = - \sin x$ in above equation.
$ \Rightarrow \sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right) = \dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]$
Now, put the value of $\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)$ in integral (i).
$\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\left[ {\sin \left( 2 \right) - \sin \left( {4x} \right)} \right]dx} $…(ii)
Use distributive property in integral (ii).
$\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\left[ {\dfrac{1}{2}\sin \left( 2 \right) - \dfrac{1}{2}\sin \left( {4x} \right)} \right]dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \int {\dfrac{1}{2}\sin \left( 2 \right)dx} - \int {\dfrac{1}{2}\sin \left( {4x} \right)dx} \]…(iv)
Now, using the property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $
So, in above integral (iv), we can use above property
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)\int {dx} - \dfrac{1}{2}\int {\sin \left( {4x} \right)dx} \]…(v)
Now, using the integration formula $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1$ and \[\int {\sin xdx} = - \cos x + C\] in integration (v), we get
\[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{2}\sin \left( 2 \right)x - \dfrac{1}{2} \times \dfrac{{\cos \left( {4x} \right)}}{4} + C\]
It can be written as \[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C\].
Hence, \[\int {\sin \left( {1 - 2x} \right)\cos \left( {1 + 2x} \right)dx} = \dfrac{1}{8}\left[ {4\sin \left( 2 \right)x + \cos \left( {4x} \right)} \right] + C\].
Note: To evaluate integrals of the form $\int {\sin mx\cos nxdx} $, $\int {\sin mx\sin nxdx} $, $\int {\cos mx} \cos nxdx$ and $\int {\cos mx\sin nxdx} $, we use the following trigonometric identities:
$2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
$2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)$
$2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
$2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

