
Integrate: $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=$
Answer
481.2k+ views
Hint:
1) If $f(x)$ is an even function, then $\int_{-a}^{a}{f(x)\ dx}=2\int_{0}^{a}{f(x)\ dx}$ .
If $f(x)$ is an odd function, then $\int_{-a}^{a}{f(x)\ dx=0}$ .
2) The expression ${{\sin }^{-2}}x$ is equal to ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ and ${{\sin }^{2n+1}}x$ is equal to ${{\left( \sin x \right)}^{2n+1}}$ .
3) Use the property that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , to check if the expression to be integrated is an even expression or odd.
Complete step by step solution:
Let $f(x)={{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x$ . It can also be written as $f(x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( \sin x \right)}^{2n+1}}$ for a better apprehension.
Let us find the expression for $f(-x)$ to compare and check whether it is an even function or odd.
$f(-x)={{e}^{{{\left[ {{\sin }^{-1}}(-x) \right]}^{2}}}}.{{\left[ \sin (-x) \right]}^{2n+1}}$
Using the fact that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , we get:
⇒ $f(-x)={{e}^{{{\left[ -{{\sin }^{-1}}x \right]}^{2}}}}.{{\left[ -\sin x \right]}^{2n+1}}$
⇒ $f(-x)={{e}^{{{\left( -1 \right)}^{2}}{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( -1 \right)}^{2n+1}}{{\left( \sin x \right)}^{2n+1}}$
Since $2n+1$ is odd for any value of n, we get:
⇒ $f(-x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.\left( -1 \right){{\left( \sin x \right)}^{2n+1}}$
⇒ $f(-x)=-f(x)$
This means that $f(x)$ is an odd function and therefore $\int\limits_{-a}^{a}{f(x)\ dx}$ must be 0, for any real number a.
∴ $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=0$ is the answer.
Note:
1) A function f(x) is:
Even, if $f(-x)=f(x)$ .
Odd, if $f(-x)=-f(x)$ .
None, in other cases.
* An even/odd function is different from an even/odd number.
2) ${{(-x)}^{\text{even number}}}=x$ and ${{(-x)}^{\text{odd number}}}=-x$ .
3) Definite Integral: If $\int{f\left( x \right)dx}=g\left( x \right)+C$ , then $\int\limits_{a}^{b}{f(x)dx}=[g(x)]_{a}^{b}=g(b)-g(a)$ .
1) If $f(x)$ is an even function, then $\int_{-a}^{a}{f(x)\ dx}=2\int_{0}^{a}{f(x)\ dx}$ .
If $f(x)$ is an odd function, then $\int_{-a}^{a}{f(x)\ dx=0}$ .
2) The expression ${{\sin }^{-2}}x$ is equal to ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ and ${{\sin }^{2n+1}}x$ is equal to ${{\left( \sin x \right)}^{2n+1}}$ .
3) Use the property that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , to check if the expression to be integrated is an even expression or odd.
Complete step by step solution:
Let $f(x)={{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x$ . It can also be written as $f(x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( \sin x \right)}^{2n+1}}$ for a better apprehension.
Let us find the expression for $f(-x)$ to compare and check whether it is an even function or odd.
$f(-x)={{e}^{{{\left[ {{\sin }^{-1}}(-x) \right]}^{2}}}}.{{\left[ \sin (-x) \right]}^{2n+1}}$
Using the fact that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , we get:
⇒ $f(-x)={{e}^{{{\left[ -{{\sin }^{-1}}x \right]}^{2}}}}.{{\left[ -\sin x \right]}^{2n+1}}$
⇒ $f(-x)={{e}^{{{\left( -1 \right)}^{2}}{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( -1 \right)}^{2n+1}}{{\left( \sin x \right)}^{2n+1}}$
Since $2n+1$ is odd for any value of n, we get:
⇒ $f(-x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.\left( -1 \right){{\left( \sin x \right)}^{2n+1}}$
⇒ $f(-x)=-f(x)$
This means that $f(x)$ is an odd function and therefore $\int\limits_{-a}^{a}{f(x)\ dx}$ must be 0, for any real number a.
∴ $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=0$ is the answer.
Note:
1) A function f(x) is:
Even, if $f(-x)=f(x)$ .
Odd, if $f(-x)=-f(x)$ .
None, in other cases.
* An even/odd function is different from an even/odd number.
2) ${{(-x)}^{\text{even number}}}=x$ and ${{(-x)}^{\text{odd number}}}=-x$ .
3) Definite Integral: If $\int{f\left( x \right)dx}=g\left( x \right)+C$ , then $\int\limits_{a}^{b}{f(x)dx}=[g(x)]_{a}^{b}=g(b)-g(a)$ .
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
