
Integrate: $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=$
Answer
570k+ views
Hint:
1) If $f(x)$ is an even function, then $\int_{-a}^{a}{f(x)\ dx}=2\int_{0}^{a}{f(x)\ dx}$ .
If $f(x)$ is an odd function, then $\int_{-a}^{a}{f(x)\ dx=0}$ .
2) The expression ${{\sin }^{-2}}x$ is equal to ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ and ${{\sin }^{2n+1}}x$ is equal to ${{\left( \sin x \right)}^{2n+1}}$ .
3) Use the property that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , to check if the expression to be integrated is an even expression or odd.
Complete step by step solution:
Let $f(x)={{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x$ . It can also be written as $f(x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( \sin x \right)}^{2n+1}}$ for a better apprehension.
Let us find the expression for $f(-x)$ to compare and check whether it is an even function or odd.
$f(-x)={{e}^{{{\left[ {{\sin }^{-1}}(-x) \right]}^{2}}}}.{{\left[ \sin (-x) \right]}^{2n+1}}$
Using the fact that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , we get:
⇒ $f(-x)={{e}^{{{\left[ -{{\sin }^{-1}}x \right]}^{2}}}}.{{\left[ -\sin x \right]}^{2n+1}}$
⇒ $f(-x)={{e}^{{{\left( -1 \right)}^{2}}{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( -1 \right)}^{2n+1}}{{\left( \sin x \right)}^{2n+1}}$
Since $2n+1$ is odd for any value of n, we get:
⇒ $f(-x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.\left( -1 \right){{\left( \sin x \right)}^{2n+1}}$
⇒ $f(-x)=-f(x)$
This means that $f(x)$ is an odd function and therefore $\int\limits_{-a}^{a}{f(x)\ dx}$ must be 0, for any real number a.
∴ $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=0$ is the answer.
Note:
1) A function f(x) is:
Even, if $f(-x)=f(x)$ .
Odd, if $f(-x)=-f(x)$ .
None, in other cases.
* An even/odd function is different from an even/odd number.
2) ${{(-x)}^{\text{even number}}}=x$ and ${{(-x)}^{\text{odd number}}}=-x$ .
3) Definite Integral: If $\int{f\left( x \right)dx}=g\left( x \right)+C$ , then $\int\limits_{a}^{b}{f(x)dx}=[g(x)]_{a}^{b}=g(b)-g(a)$ .
1) If $f(x)$ is an even function, then $\int_{-a}^{a}{f(x)\ dx}=2\int_{0}^{a}{f(x)\ dx}$ .
If $f(x)$ is an odd function, then $\int_{-a}^{a}{f(x)\ dx=0}$ .
2) The expression ${{\sin }^{-2}}x$ is equal to ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ and ${{\sin }^{2n+1}}x$ is equal to ${{\left( \sin x \right)}^{2n+1}}$ .
3) Use the property that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , to check if the expression to be integrated is an even expression or odd.
Complete step by step solution:
Let $f(x)={{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x$ . It can also be written as $f(x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( \sin x \right)}^{2n+1}}$ for a better apprehension.
Let us find the expression for $f(-x)$ to compare and check whether it is an even function or odd.
$f(-x)={{e}^{{{\left[ {{\sin }^{-1}}(-x) \right]}^{2}}}}.{{\left[ \sin (-x) \right]}^{2n+1}}$
Using the fact that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , we get:
⇒ $f(-x)={{e}^{{{\left[ -{{\sin }^{-1}}x \right]}^{2}}}}.{{\left[ -\sin x \right]}^{2n+1}}$
⇒ $f(-x)={{e}^{{{\left( -1 \right)}^{2}}{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( -1 \right)}^{2n+1}}{{\left( \sin x \right)}^{2n+1}}$
Since $2n+1$ is odd for any value of n, we get:
⇒ $f(-x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.\left( -1 \right){{\left( \sin x \right)}^{2n+1}}$
⇒ $f(-x)=-f(x)$
This means that $f(x)$ is an odd function and therefore $\int\limits_{-a}^{a}{f(x)\ dx}$ must be 0, for any real number a.
∴ $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=0$ is the answer.
Note:
1) A function f(x) is:
Even, if $f(-x)=f(x)$ .
Odd, if $f(-x)=-f(x)$ .
None, in other cases.
* An even/odd function is different from an even/odd number.
2) ${{(-x)}^{\text{even number}}}=x$ and ${{(-x)}^{\text{odd number}}}=-x$ .
3) Definite Integral: If $\int{f\left( x \right)dx}=g\left( x \right)+C$ , then $\int\limits_{a}^{b}{f(x)dx}=[g(x)]_{a}^{b}=g(b)-g(a)$ .
Recently Updated Pages
Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

How can you explain that CCl4 has no dipole moment class 11 chemistry CBSE

Which will undergo SN2 reaction fastest among the following class 11 chemistry CBSE

The values of mass m for which the 100 kg block does class 11 physics CBSE

Why are voluntary muscles called striated muscles class 11 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

