
Integrate: $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=$
Answer
555.6k+ views
Hint:
1) If $f(x)$ is an even function, then $\int_{-a}^{a}{f(x)\ dx}=2\int_{0}^{a}{f(x)\ dx}$ .
If $f(x)$ is an odd function, then $\int_{-a}^{a}{f(x)\ dx=0}$ .
2) The expression ${{\sin }^{-2}}x$ is equal to ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ and ${{\sin }^{2n+1}}x$ is equal to ${{\left( \sin x \right)}^{2n+1}}$ .
3) Use the property that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , to check if the expression to be integrated is an even expression or odd.
Complete step by step solution:
Let $f(x)={{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x$ . It can also be written as $f(x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( \sin x \right)}^{2n+1}}$ for a better apprehension.
Let us find the expression for $f(-x)$ to compare and check whether it is an even function or odd.
$f(-x)={{e}^{{{\left[ {{\sin }^{-1}}(-x) \right]}^{2}}}}.{{\left[ \sin (-x) \right]}^{2n+1}}$
Using the fact that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , we get:
⇒ $f(-x)={{e}^{{{\left[ -{{\sin }^{-1}}x \right]}^{2}}}}.{{\left[ -\sin x \right]}^{2n+1}}$
⇒ $f(-x)={{e}^{{{\left( -1 \right)}^{2}}{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( -1 \right)}^{2n+1}}{{\left( \sin x \right)}^{2n+1}}$
Since $2n+1$ is odd for any value of n, we get:
⇒ $f(-x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.\left( -1 \right){{\left( \sin x \right)}^{2n+1}}$
⇒ $f(-x)=-f(x)$
This means that $f(x)$ is an odd function and therefore $\int\limits_{-a}^{a}{f(x)\ dx}$ must be 0, for any real number a.
∴ $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=0$ is the answer.
Note:
1) A function f(x) is:
Even, if $f(-x)=f(x)$ .
Odd, if $f(-x)=-f(x)$ .
None, in other cases.
* An even/odd function is different from an even/odd number.
2) ${{(-x)}^{\text{even number}}}=x$ and ${{(-x)}^{\text{odd number}}}=-x$ .
3) Definite Integral: If $\int{f\left( x \right)dx}=g\left( x \right)+C$ , then $\int\limits_{a}^{b}{f(x)dx}=[g(x)]_{a}^{b}=g(b)-g(a)$ .
1) If $f(x)$ is an even function, then $\int_{-a}^{a}{f(x)\ dx}=2\int_{0}^{a}{f(x)\ dx}$ .
If $f(x)$ is an odd function, then $\int_{-a}^{a}{f(x)\ dx=0}$ .
2) The expression ${{\sin }^{-2}}x$ is equal to ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ and ${{\sin }^{2n+1}}x$ is equal to ${{\left( \sin x \right)}^{2n+1}}$ .
3) Use the property that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , to check if the expression to be integrated is an even expression or odd.
Complete step by step solution:
Let $f(x)={{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x$ . It can also be written as $f(x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( \sin x \right)}^{2n+1}}$ for a better apprehension.
Let us find the expression for $f(-x)$ to compare and check whether it is an even function or odd.
$f(-x)={{e}^{{{\left[ {{\sin }^{-1}}(-x) \right]}^{2}}}}.{{\left[ \sin (-x) \right]}^{2n+1}}$
Using the fact that $\sin \left( -\theta \right)=-\sin \theta $ and ${{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}x$ , we get:
⇒ $f(-x)={{e}^{{{\left[ -{{\sin }^{-1}}x \right]}^{2}}}}.{{\left[ -\sin x \right]}^{2n+1}}$
⇒ $f(-x)={{e}^{{{\left( -1 \right)}^{2}}{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.{{\left( -1 \right)}^{2n+1}}{{\left( \sin x \right)}^{2n+1}}$
Since $2n+1$ is odd for any value of n, we get:
⇒ $f(-x)={{e}^{{{\left( {{\sin }^{-1}}x \right)}^{2}}}}.\left( -1 \right){{\left( \sin x \right)}^{2n+1}}$
⇒ $f(-x)=-f(x)$
This means that $f(x)$ is an odd function and therefore $\int\limits_{-a}^{a}{f(x)\ dx}$ must be 0, for any real number a.
∴ $\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=0$ is the answer.
Note:
1) A function f(x) is:
Even, if $f(-x)=f(x)$ .
Odd, if $f(-x)=-f(x)$ .
None, in other cases.
* An even/odd function is different from an even/odd number.
2) ${{(-x)}^{\text{even number}}}=x$ and ${{(-x)}^{\text{odd number}}}=-x$ .
3) Definite Integral: If $\int{f\left( x \right)dx}=g\left( x \right)+C$ , then $\int\limits_{a}^{b}{f(x)dx}=[g(x)]_{a}^{b}=g(b)-g(a)$ .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

