Answer
Verified
447.6k+ views
Hint: Before attempting this question, one should have prior knowledge about the quadratic equation as in the above equation is a quadratic equation of degree 2 so this equation can easily be solved by the quadratic formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ and also remember to let ${p^2}$ as the perfect square of the given equation and use the algebraic identities ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$.
Complete step-by-step solution:
The given quadratic equation is: ${x^2} + ax + a + 1 = 0$
So, by applying quadratic formula we get
$x = \dfrac{{ - a \pm \sqrt {{a^2} - 4(a + 1)} }}{{2a}}$
= $x = \dfrac{{ - a \pm \sqrt {{a^2} - 4a - 4} }}{{2a}}$
So, to get the integral values of a the expression ${a^2} - 4a - 4$ need to be a perfect square
So ${a^2} - 4a - 4 = {p^2}$
Here ${p^2}$ is a perfect square
\[
{a^2} - 4a - 4 - {p^2} = 0 \\
{a^2} - 4a = 4 + {p^2} \\
{a^2} - 4a + 4 = 4 + 4 + {p^2} \\
\]
Here 4 is added to both left- and right-hand sides
As we know that ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$
Therefore ${(a - 2)^2} = 8 + {p^2}$
Let the value of p=1
$
{(a - 2)^2} = 8 + 1 \\
{(a - 2)^2} = 9 \\
a - 2 = \pm 3 \\
$
Let a – 2 = 3
This gives a = 5
And a – 2 = -3
This gives a = - 1
So, the options A and D are correct
We can further put the ${p^2} = 4,9,16..$ and other perfect squares but the answer will be irrational which is irreverent for us.
Note: In the above question to approach the solution we used the quadratic formula i.e. $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where a, b, and c is the real number of an quadratic equation than to get the integral roots of a the determinant ($\sqrt {{b^2} - 4ac} $) must to be a perfect square so we put $\sqrt {{b^2} - 4ac} = {p^2}$ where ${p^2}$ is a perfect square.
Complete step-by-step solution:
The given quadratic equation is: ${x^2} + ax + a + 1 = 0$
So, by applying quadratic formula we get
$x = \dfrac{{ - a \pm \sqrt {{a^2} - 4(a + 1)} }}{{2a}}$
= $x = \dfrac{{ - a \pm \sqrt {{a^2} - 4a - 4} }}{{2a}}$
So, to get the integral values of a the expression ${a^2} - 4a - 4$ need to be a perfect square
So ${a^2} - 4a - 4 = {p^2}$
Here ${p^2}$ is a perfect square
\[
{a^2} - 4a - 4 - {p^2} = 0 \\
{a^2} - 4a = 4 + {p^2} \\
{a^2} - 4a + 4 = 4 + 4 + {p^2} \\
\]
Here 4 is added to both left- and right-hand sides
As we know that ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$
Therefore ${(a - 2)^2} = 8 + {p^2}$
Let the value of p=1
$
{(a - 2)^2} = 8 + 1 \\
{(a - 2)^2} = 9 \\
a - 2 = \pm 3 \\
$
Let a – 2 = 3
This gives a = 5
And a – 2 = -3
This gives a = - 1
So, the options A and D are correct
We can further put the ${p^2} = 4,9,16..$ and other perfect squares but the answer will be irrational which is irreverent for us.
Note: In the above question to approach the solution we used the quadratic formula i.e. $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where a, b, and c is the real number of an quadratic equation than to get the integral roots of a the determinant ($\sqrt {{b^2} - 4ac} $) must to be a perfect square so we put $\sqrt {{b^2} - 4ac} = {p^2}$ where ${p^2}$ is a perfect square.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE