
Integral value of a that quadratic equation ${x^2} + ax + a + 1 = 0$ has integral roots is equal to
(This question has multiple correct options)
A). -1
B). 2
C). 1
D). 5
Answer
578.1k+ views
Hint: Before attempting this question, one should have prior knowledge about the quadratic equation as in the above equation is a quadratic equation of degree 2 so this equation can easily be solved by the quadratic formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ and also remember to let ${p^2}$ as the perfect square of the given equation and use the algebraic identities ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$.
Complete step-by-step solution:
The given quadratic equation is: ${x^2} + ax + a + 1 = 0$
So, by applying quadratic formula we get
$x = \dfrac{{ - a \pm \sqrt {{a^2} - 4(a + 1)} }}{{2a}}$
= $x = \dfrac{{ - a \pm \sqrt {{a^2} - 4a - 4} }}{{2a}}$
So, to get the integral values of a the expression ${a^2} - 4a - 4$ need to be a perfect square
So ${a^2} - 4a - 4 = {p^2}$
Here ${p^2}$ is a perfect square
\[
{a^2} - 4a - 4 - {p^2} = 0 \\
{a^2} - 4a = 4 + {p^2} \\
{a^2} - 4a + 4 = 4 + 4 + {p^2} \\
\]
Here 4 is added to both left- and right-hand sides
As we know that ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$
Therefore ${(a - 2)^2} = 8 + {p^2}$
Let the value of p=1
$
{(a - 2)^2} = 8 + 1 \\
{(a - 2)^2} = 9 \\
a - 2 = \pm 3 \\
$
Let a – 2 = 3
This gives a = 5
And a – 2 = -3
This gives a = - 1
So, the options A and D are correct
We can further put the ${p^2} = 4,9,16..$ and other perfect squares but the answer will be irrational which is irreverent for us.
Note: In the above question to approach the solution we used the quadratic formula i.e. $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where a, b, and c is the real number of an quadratic equation than to get the integral roots of a the determinant ($\sqrt {{b^2} - 4ac} $) must to be a perfect square so we put $\sqrt {{b^2} - 4ac} = {p^2}$ where ${p^2}$ is a perfect square.
Complete step-by-step solution:
The given quadratic equation is: ${x^2} + ax + a + 1 = 0$
So, by applying quadratic formula we get
$x = \dfrac{{ - a \pm \sqrt {{a^2} - 4(a + 1)} }}{{2a}}$
= $x = \dfrac{{ - a \pm \sqrt {{a^2} - 4a - 4} }}{{2a}}$
So, to get the integral values of a the expression ${a^2} - 4a - 4$ need to be a perfect square
So ${a^2} - 4a - 4 = {p^2}$
Here ${p^2}$ is a perfect square
\[
{a^2} - 4a - 4 - {p^2} = 0 \\
{a^2} - 4a = 4 + {p^2} \\
{a^2} - 4a + 4 = 4 + 4 + {p^2} \\
\]
Here 4 is added to both left- and right-hand sides
As we know that ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$
Therefore ${(a - 2)^2} = 8 + {p^2}$
Let the value of p=1
$
{(a - 2)^2} = 8 + 1 \\
{(a - 2)^2} = 9 \\
a - 2 = \pm 3 \\
$
Let a – 2 = 3
This gives a = 5
And a – 2 = -3
This gives a = - 1
So, the options A and D are correct
We can further put the ${p^2} = 4,9,16..$ and other perfect squares but the answer will be irrational which is irreverent for us.
Note: In the above question to approach the solution we used the quadratic formula i.e. $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where a, b, and c is the real number of an quadratic equation than to get the integral roots of a the determinant ($\sqrt {{b^2} - 4ac} $) must to be a perfect square so we put $\sqrt {{b^2} - 4ac} = {p^2}$ where ${p^2}$ is a perfect square.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

