Answer
Verified
492.9k+ views
Hint: A trapezium is a 2D shape which falls under the category of quadrilaterals. A trapezium has two parallel sides and two non-parallel sides. Using this information first draw the diagram with the given data and solve the problem accordingly.
Complete step-by-step answer:
In the given trapezium ABCD, \[\overline {AB} \parallel \overline {CD} \], \[M\] and \[N\]are the points on the traversals \[\overleftrightarrow {AD}\] and \[\overleftrightarrow {BC}\] respectively as shown in the below diagram.
Also, given \[\dfrac{{AM}}{{MD}} = \dfrac{{BN}}{{NC}} = \dfrac{2}{3}\]
So, clearly from the diagram, \[\overline {MN} \parallel \overline {AB} \] and \[\overline {AB} \parallel \overline {CD} \].
Given that diagonal \[\overline {AC} \] intersects \[\overline {MN} \] at \[O\].
In \[\Delta ADC\], \[\overline {MO} \parallel \overline {DC} \] such that \[M \in \overline {AD} {\text{ }}\& {\text{ }}O \in \overline {AC} \].
We know that by the Triangle Proportionality theorem, if a line parallel to one side of a triangle intersects the other two sides of the triangle, then the lines divide these two sides proportionally.
By using this property in \[\Delta ADC\], we have
\[ \Rightarrow \dfrac{{AM}}{{MD}} = \dfrac{{AO}}{{OC}}\]
But we have \[\dfrac{{AM}}{{MD}} = \dfrac{2}{3}\]
So, \[\dfrac{{AO}}{{OC}} = \dfrac{2}{3}\]
We have to find \[\dfrac{{AO}}{{AC}}\]. From the diagram, \[OC = AO + OC\]
\[
\Rightarrow \dfrac{{AO}}{{OC}} = \dfrac{{AO}}{{AO + OC}} \\
\Rightarrow \dfrac{{AO}}{{OC}} = \dfrac{2}{{2 + 3}} \\
\therefore \dfrac{{AO}}{{OC}} = \dfrac{2}{5} \\
\]
Thus, \[\dfrac{{AO}}{{OC}} = \dfrac{2}{5}\].
Note: The length of the mid-segment is equal to half of the sum of parallel bases in a trapezium. In this problem we have used both the properties of triangles as well as the properties of trapezium.
Complete step-by-step answer:
In the given trapezium ABCD, \[\overline {AB} \parallel \overline {CD} \], \[M\] and \[N\]are the points on the traversals \[\overleftrightarrow {AD}\] and \[\overleftrightarrow {BC}\] respectively as shown in the below diagram.
Also, given \[\dfrac{{AM}}{{MD}} = \dfrac{{BN}}{{NC}} = \dfrac{2}{3}\]
So, clearly from the diagram, \[\overline {MN} \parallel \overline {AB} \] and \[\overline {AB} \parallel \overline {CD} \].
Given that diagonal \[\overline {AC} \] intersects \[\overline {MN} \] at \[O\].
In \[\Delta ADC\], \[\overline {MO} \parallel \overline {DC} \] such that \[M \in \overline {AD} {\text{ }}\& {\text{ }}O \in \overline {AC} \].
We know that by the Triangle Proportionality theorem, if a line parallel to one side of a triangle intersects the other two sides of the triangle, then the lines divide these two sides proportionally.
By using this property in \[\Delta ADC\], we have
\[ \Rightarrow \dfrac{{AM}}{{MD}} = \dfrac{{AO}}{{OC}}\]
But we have \[\dfrac{{AM}}{{MD}} = \dfrac{2}{3}\]
So, \[\dfrac{{AO}}{{OC}} = \dfrac{2}{3}\]
We have to find \[\dfrac{{AO}}{{AC}}\]. From the diagram, \[OC = AO + OC\]
\[
\Rightarrow \dfrac{{AO}}{{OC}} = \dfrac{{AO}}{{AO + OC}} \\
\Rightarrow \dfrac{{AO}}{{OC}} = \dfrac{2}{{2 + 3}} \\
\therefore \dfrac{{AO}}{{OC}} = \dfrac{2}{5} \\
\]
Thus, \[\dfrac{{AO}}{{OC}} = \dfrac{2}{5}\].
Note: The length of the mid-segment is equal to half of the sum of parallel bases in a trapezium. In this problem we have used both the properties of triangles as well as the properties of trapezium.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE