
In trapezium ABCD, \[M \in \overline {AD} ,N \in \overline {BC} \] are the points such \[\dfrac{{AM}}{{MD}} = \dfrac{{BN}}{{NC}} = \dfrac{2}{3}\]. The diagonal \[\overline {AC} \] intersects \[\overline {MN} \] at\[O\]. Then find the value of \[\dfrac{{AO}}{{AC}}\].
Answer
600.9k+ views
Hint: A trapezium is a 2D shape which falls under the category of quadrilaterals. A trapezium has two parallel sides and two non-parallel sides. Using this information first draw the diagram with the given data and solve the problem accordingly.
Complete step-by-step answer:
In the given trapezium ABCD, \[\overline {AB} \parallel \overline {CD} \], \[M\] and \[N\]are the points on the traversals \[\overleftrightarrow {AD}\] and \[\overleftrightarrow {BC}\] respectively as shown in the below diagram.
Also, given \[\dfrac{{AM}}{{MD}} = \dfrac{{BN}}{{NC}} = \dfrac{2}{3}\]
So, clearly from the diagram, \[\overline {MN} \parallel \overline {AB} \] and \[\overline {AB} \parallel \overline {CD} \].
Given that diagonal \[\overline {AC} \] intersects \[\overline {MN} \] at \[O\].
In \[\Delta ADC\], \[\overline {MO} \parallel \overline {DC} \] such that \[M \in \overline {AD} {\text{ }}\& {\text{ }}O \in \overline {AC} \].
We know that by the Triangle Proportionality theorem, if a line parallel to one side of a triangle intersects the other two sides of the triangle, then the lines divide these two sides proportionally.
By using this property in \[\Delta ADC\], we have
\[ \Rightarrow \dfrac{{AM}}{{MD}} = \dfrac{{AO}}{{OC}}\]
But we have \[\dfrac{{AM}}{{MD}} = \dfrac{2}{3}\]
So, \[\dfrac{{AO}}{{OC}} = \dfrac{2}{3}\]
We have to find \[\dfrac{{AO}}{{AC}}\]. From the diagram, \[OC = AO + OC\]
\[
\Rightarrow \dfrac{{AO}}{{OC}} = \dfrac{{AO}}{{AO + OC}} \\
\Rightarrow \dfrac{{AO}}{{OC}} = \dfrac{2}{{2 + 3}} \\
\therefore \dfrac{{AO}}{{OC}} = \dfrac{2}{5} \\
\]
Thus, \[\dfrac{{AO}}{{OC}} = \dfrac{2}{5}\].
Note: The length of the mid-segment is equal to half of the sum of parallel bases in a trapezium. In this problem we have used both the properties of triangles as well as the properties of trapezium.
Complete step-by-step answer:
In the given trapezium ABCD, \[\overline {AB} \parallel \overline {CD} \], \[M\] and \[N\]are the points on the traversals \[\overleftrightarrow {AD}\] and \[\overleftrightarrow {BC}\] respectively as shown in the below diagram.
Also, given \[\dfrac{{AM}}{{MD}} = \dfrac{{BN}}{{NC}} = \dfrac{2}{3}\]
So, clearly from the diagram, \[\overline {MN} \parallel \overline {AB} \] and \[\overline {AB} \parallel \overline {CD} \].
Given that diagonal \[\overline {AC} \] intersects \[\overline {MN} \] at \[O\].
In \[\Delta ADC\], \[\overline {MO} \parallel \overline {DC} \] such that \[M \in \overline {AD} {\text{ }}\& {\text{ }}O \in \overline {AC} \].
We know that by the Triangle Proportionality theorem, if a line parallel to one side of a triangle intersects the other two sides of the triangle, then the lines divide these two sides proportionally.
By using this property in \[\Delta ADC\], we have
\[ \Rightarrow \dfrac{{AM}}{{MD}} = \dfrac{{AO}}{{OC}}\]
But we have \[\dfrac{{AM}}{{MD}} = \dfrac{2}{3}\]
So, \[\dfrac{{AO}}{{OC}} = \dfrac{2}{3}\]
We have to find \[\dfrac{{AO}}{{AC}}\]. From the diagram, \[OC = AO + OC\]
\[
\Rightarrow \dfrac{{AO}}{{OC}} = \dfrac{{AO}}{{AO + OC}} \\
\Rightarrow \dfrac{{AO}}{{OC}} = \dfrac{2}{{2 + 3}} \\
\therefore \dfrac{{AO}}{{OC}} = \dfrac{2}{5} \\
\]
Thus, \[\dfrac{{AO}}{{OC}} = \dfrac{2}{5}\].
Note: The length of the mid-segment is equal to half of the sum of parallel bases in a trapezium. In this problem we have used both the properties of triangles as well as the properties of trapezium.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

