Answer
Verified
455.1k+ views
Hint: We take a relation from a set of natural numbers to the set of natural numbers. We define a relation using the function square of a natural number. We check if the relation is an equivalence relation by checking for the reflexive, symmetric, and transitive nature of the relation.
* Reflexive: A relation R is said to be reflexive if \[(a,a) \in R\] for every \[a \in R\].
* Symmetric: A relation R is said to be symmetric if \[(a,b) \in R\] then \[(b,a) \in R\] for every \[a,b \in R\].
* Transitive: A relation R is said to be transitive if \[(a,b) \in R;(b,c) \in R\] then \[(a,c) \in R\] for every \[a,b,c \in R\].
Complete step by step answer:
Let us take two sets of natural numbers A and B
We define a relation \[R:A \to B\]such that for every x in A there is y in B defined by the function\[y = {x^2}\]for every\[x,y \in N\].
We can write the first few elements of set A and B
\[A = \left\{ {1,2,3,4...} \right\}\]
\[B = \left\{ {1,4,9,16,...} \right\}\]
Now we assume three elements of the set R say x, y, and z.
Reflexive:
We know the function \[y = {x^2}\]gives the square value of the element of A.
So, for \[x = 1\]we get \[{x^2} = 1\]
But for \[x = 2\]we get \[{x^2} = 4\]
\[ \Rightarrow (x,x) \notin R\]
So the relation is not reflexive.
Symmetric:
We know the function \[y = {x^2}\]gives the square value of the element of A.
For elements \[x,y \in A\]we know\[(x,y) \in R\]
\[ \Rightarrow y = {x^2}\]
We check if \[(y,x) \in R\]
\[ \Rightarrow x = {y^2}\]
Since both\[x,y \in N\], then \[x,{y^2} \in N\]
\[ \Rightarrow (y,x) \in R\]
So the relation is symmetric.
Transitive:
We know the function \[y = {x^2}\]gives the square value of the element of A.
For elements \[x,y,z \in A\]we know\[(x,y) \in R;(y,z) \in R\]
\[ \Rightarrow y = {x^2}\]and \[z = {y^2}\]
We check if \[(x,z) \in R\]i.e. check if \[z = {x^2}\]
Substitute the value of \[y = {x^2}\]in place of y in equation \[z = {y^2}\]
\[ \Rightarrow z = {({x^2})^2}\]
\[ \Rightarrow z = {x^4}\]
So, \[z \ne {x^2}\]
\[ \Rightarrow (x,z) \notin R\]
So the relation is not transitive.
Since the relation is not symmetric and not transitive, we can say the relation R defined by ‘is square of’ is not an equivalence relation.
Note:
Students might try to prove the relation is an equivalence relation by giving examples of (1,1) etc. Keep in mind we give examples to prove the contradiction. To prove the relation is equivalence we will have to give a general proof.
* Reflexive: A relation R is said to be reflexive if \[(a,a) \in R\] for every \[a \in R\].
* Symmetric: A relation R is said to be symmetric if \[(a,b) \in R\] then \[(b,a) \in R\] for every \[a,b \in R\].
* Transitive: A relation R is said to be transitive if \[(a,b) \in R;(b,c) \in R\] then \[(a,c) \in R\] for every \[a,b,c \in R\].
Complete step by step answer:
Let us take two sets of natural numbers A and B
We define a relation \[R:A \to B\]such that for every x in A there is y in B defined by the function\[y = {x^2}\]for every\[x,y \in N\].
We can write the first few elements of set A and B
\[A = \left\{ {1,2,3,4...} \right\}\]
\[B = \left\{ {1,4,9,16,...} \right\}\]
Now we assume three elements of the set R say x, y, and z.
Reflexive:
We know the function \[y = {x^2}\]gives the square value of the element of A.
So, for \[x = 1\]we get \[{x^2} = 1\]
But for \[x = 2\]we get \[{x^2} = 4\]
\[ \Rightarrow (x,x) \notin R\]
So the relation is not reflexive.
Symmetric:
We know the function \[y = {x^2}\]gives the square value of the element of A.
For elements \[x,y \in A\]we know\[(x,y) \in R\]
\[ \Rightarrow y = {x^2}\]
We check if \[(y,x) \in R\]
\[ \Rightarrow x = {y^2}\]
Since both\[x,y \in N\], then \[x,{y^2} \in N\]
\[ \Rightarrow (y,x) \in R\]
So the relation is symmetric.
Transitive:
We know the function \[y = {x^2}\]gives the square value of the element of A.
For elements \[x,y,z \in A\]we know\[(x,y) \in R;(y,z) \in R\]
\[ \Rightarrow y = {x^2}\]and \[z = {y^2}\]
We check if \[(x,z) \in R\]i.e. check if \[z = {x^2}\]
Substitute the value of \[y = {x^2}\]in place of y in equation \[z = {y^2}\]
\[ \Rightarrow z = {({x^2})^2}\]
\[ \Rightarrow z = {x^4}\]
So, \[z \ne {x^2}\]
\[ \Rightarrow (x,z) \notin R\]
So the relation is not transitive.
Since the relation is not symmetric and not transitive, we can say the relation R defined by ‘is square of’ is not an equivalence relation.
Note:
Students might try to prove the relation is an equivalence relation by giving examples of (1,1) etc. Keep in mind we give examples to prove the contradiction. To prove the relation is equivalence we will have to give a general proof.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE