In the given figures sides $AB$ and $BC$ and median $AD$ of a $\Delta ABC$ are respectively proportional to sides $PQ,QR$ and median $PM$ of $\Delta PQR$ . show that triangle $\Delta ABC \sim \Delta PQR$.
Last updated date: 31st Mar 2023
•
Total views: 308.1k
•
Views today: 4.85k
Answer
308.1k+ views
Hint: In order to solve this question, we have to apply similarity rules of triangles and in which side and angles helps us to show the similarities of these triangles.
Complete step-by-step answer:
According to given question,
$\dfrac{{AB}}{{PQ}} = \dfrac{{BC}}{{QR}} = \dfrac{{AD}}{{PM}} - - - - - \left( 1 \right)$
In $\Delta ABC$, since $AD$ is the median,
$BD = CD = \dfrac{1}{2}BC$
Or $BC = 2BD - - - - - \left( 2 \right)$
Similarly, $PM$ is the median,
$QM = RM = \dfrac{1}{2}QR$
Or $QR = 2QM - - - - - \left( 3 \right)$
Substituting the value of $BC,QR$ in equation (1), we get
$\dfrac{{AB}}{{PQ}} = \dfrac{{2BD}}{{2QM}} = \dfrac{{AD}}{{PM}}$
$\dfrac{{AB}}{{PQ}} = \dfrac{{BD}}{{QM}} = \dfrac{{AD}}{{PM}} - - - - - \left( 4 \right)$
Since all three sides are proportional.
Therefore, by SSS similarity rule,
$\Delta ABD \sim \Delta PQM$
Hence,$\angle B = \angle Q - - - - - - \left( 5 \right)$,
corresponding angles of similar triangles are equal.
In $\Delta ABC\& \Delta PQR$
Using (5), we get
$\angle B = \angle Q$
Given, $\dfrac{{AB}}{{PQ}} = \dfrac{{BC}}{{QR}}$
Hence by SAS Similarity of triangle.
$\Delta ABC \sim \Delta PQR$
Note: Whenever we face these types of questions the key concept is that we have to take small triangles and by similarity rules show them similar by which we get two sides or one sides and one angle equality and we will easily get our desired answer.
Complete step-by-step answer:

According to given question,
$\dfrac{{AB}}{{PQ}} = \dfrac{{BC}}{{QR}} = \dfrac{{AD}}{{PM}} - - - - - \left( 1 \right)$
In $\Delta ABC$, since $AD$ is the median,
$BD = CD = \dfrac{1}{2}BC$
Or $BC = 2BD - - - - - \left( 2 \right)$
Similarly, $PM$ is the median,
$QM = RM = \dfrac{1}{2}QR$
Or $QR = 2QM - - - - - \left( 3 \right)$
Substituting the value of $BC,QR$ in equation (1), we get
$\dfrac{{AB}}{{PQ}} = \dfrac{{2BD}}{{2QM}} = \dfrac{{AD}}{{PM}}$
$\dfrac{{AB}}{{PQ}} = \dfrac{{BD}}{{QM}} = \dfrac{{AD}}{{PM}} - - - - - \left( 4 \right)$
Since all three sides are proportional.
Therefore, by SSS similarity rule,
$\Delta ABD \sim \Delta PQM$
Hence,$\angle B = \angle Q - - - - - - \left( 5 \right)$,
corresponding angles of similar triangles are equal.
In $\Delta ABC\& \Delta PQR$
Using (5), we get
$\angle B = \angle Q$
Given, $\dfrac{{AB}}{{PQ}} = \dfrac{{BC}}{{QR}}$
Hence by SAS Similarity of triangle.
$\Delta ABC \sim \Delta PQR$
Note: Whenever we face these types of questions the key concept is that we have to take small triangles and by similarity rules show them similar by which we get two sides or one sides and one angle equality and we will easily get our desired answer.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
