Answer
Verified
495.6k+ views
Hint: Both the parallelograms are lying on the same base and within the same parallel lines.
$(i)$Consider parallelograms $PQRS$ and $ABRS$. They are lying on the same base $RS$ and between the same parallel lines $RS$ and $PB$. And according to the property of parallelogram, we know that parallelograms lying on the same base and between the same parallel lines have equal area. Therefore:
$ \Rightarrow $ area$(PQRS)$$ = $area$(ABRS)$.
$(ii)$Now, consider $\Delta AXS$ and parallelogram $ABRS$. Both are lying on the same base $AS$ and between the same parallel lines $AS$ and $BR$. And we know that the area of the triangle having the base as a parallelogram and its third vertex lying on the opposite parallel side of the parallelogram is half the area of the same parallelogram.
$\therefore $ area$(AXS)$$ = $$\frac{1}{2}$ area$(ABRS)$
And we have already proved that, area$(PQRS)$$ = $area$(ABRS)$. Using this, we’ll get:
$ \Rightarrow $area$(AXS)$$ = $$\frac{1}{2}$area$(PQRS)$
Note: Area of a parallelogram is base times its height. So, if two parallelograms are having the same base and lying between the same parallel lines, their heights will also be the same and consequently their areas will be the same. Triangle on the other hand is having an area as half of base times its height. Therefore, a triangle having such property as mentioned above will have its area as half of the area of the parallelogram.
$(i)$Consider parallelograms $PQRS$ and $ABRS$. They are lying on the same base $RS$ and between the same parallel lines $RS$ and $PB$. And according to the property of parallelogram, we know that parallelograms lying on the same base and between the same parallel lines have equal area. Therefore:
$ \Rightarrow $ area$(PQRS)$$ = $area$(ABRS)$.
$(ii)$Now, consider $\Delta AXS$ and parallelogram $ABRS$. Both are lying on the same base $AS$ and between the same parallel lines $AS$ and $BR$. And we know that the area of the triangle having the base as a parallelogram and its third vertex lying on the opposite parallel side of the parallelogram is half the area of the same parallelogram.
$\therefore $ area$(AXS)$$ = $$\frac{1}{2}$ area$(ABRS)$
And we have already proved that, area$(PQRS)$$ = $area$(ABRS)$. Using this, we’ll get:
$ \Rightarrow $area$(AXS)$$ = $$\frac{1}{2}$area$(PQRS)$
Note: Area of a parallelogram is base times its height. So, if two parallelograms are having the same base and lying between the same parallel lines, their heights will also be the same and consequently their areas will be the same. Triangle on the other hand is having an area as half of base times its height. Therefore, a triangle having such property as mentioned above will have its area as half of the area of the parallelogram.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE