Answer
Verified
495k+ views
Hint: Use property of limits i.e. $\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + x} \right)}}{x} = 1$
Given function $f\left( x \right) = \dfrac{{\log \left( {1 + ax} \right) - \log \left( {1 - bx} \right)}}{x}$
For $f\left( x \right)$to be continuous, we must have $f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} f\left( x \right)$
Put the value of$f\left( x \right)$, we get
$f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\log (1 + ax) - \log (1 - bx)}}{x}$
Multiply and divide the equation with $a$ and $ - b$, we get
$f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{a\log (1 + ax)}}{{ax}} - \dfrac{{\left( { - b} \right)\log (1 - bx)}}{{ - bx}}$
We know that, $\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + x} \right)}}{x} = 1$
$
\therefore f\left( 0 \right) = a.1 + b.1 \\
f\left( 0 \right) = a + b \\
$
Hence, the correct option is B.
Note: Graphing a function or exploring a table of values to determine a limit can be cumbersome and time-consuming. When possible, it is more efficient to use the properties of limits, which is a collection of theorems for finding limits.
Given function $f\left( x \right) = \dfrac{{\log \left( {1 + ax} \right) - \log \left( {1 - bx} \right)}}{x}$
For $f\left( x \right)$to be continuous, we must have $f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} f\left( x \right)$
Put the value of$f\left( x \right)$, we get
$f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\log (1 + ax) - \log (1 - bx)}}{x}$
Multiply and divide the equation with $a$ and $ - b$, we get
$f\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{a\log (1 + ax)}}{{ax}} - \dfrac{{\left( { - b} \right)\log (1 - bx)}}{{ - bx}}$
We know that, $\mathop {\lim }\limits_{x \to 0} \dfrac{{\log \left( {1 + x} \right)}}{x} = 1$
$
\therefore f\left( 0 \right) = a.1 + b.1 \\
f\left( 0 \right) = a + b \\
$
Hence, the correct option is B.
Note: Graphing a function or exploring a table of values to determine a limit can be cumbersome and time-consuming. When possible, it is more efficient to use the properties of limits, which is a collection of theorems for finding limits.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE