
In the figure $\vartriangle ABC$ and $\vartriangle ABD$ are two triangles on the same base AB. If line segment CD is bisected by AB at O. Show that $area\left( {\vartriangle ABC} \right) = area\left( {\vartriangle ABD} \right)$
Answer
595.5k+ views
Hint: Here we apply the area of triangle theorem where median divides the triangle in two equal areas.
Complete step-by-step answer:
In $\vartriangle ABC$
AO is the median, (CD is bisected by AB at O)
As you know, the median divides the triangle in two equal areas.
So,$area\left( {\vartriangle AOC} \right) = area\left( {\vartriangle AOD} \right)$ …… (1)
Also, in $\vartriangle BCD$
BO is the median, (CD is bisected by AB at O)
So, $area\left( {\vartriangle BOC} \right) = area\left( {\vartriangle BOD} \right)$ …… (2)
Adding (1) and (2) equations
$area\left( {\vartriangle AOC} \right) + area\left( {\vartriangle BOC} \right) = area\left( {\vartriangle AOD} \right) = area\left( {\vartriangle BOD} \right)$
$ \Rightarrow area\left( {\vartriangle ABC} \right) = area\left( {\vartriangle ABD} \right)$
Note: Whenever you come to this type of problem you have to know about median divide the triangle in two equal areas. So for easy solving you know about theorems regarding the area of a triangle.
Complete step-by-step answer:
In $\vartriangle ABC$
AO is the median, (CD is bisected by AB at O)
As you know, the median divides the triangle in two equal areas.
So,$area\left( {\vartriangle AOC} \right) = area\left( {\vartriangle AOD} \right)$ …… (1)
Also, in $\vartriangle BCD$
BO is the median, (CD is bisected by AB at O)
So, $area\left( {\vartriangle BOC} \right) = area\left( {\vartriangle BOD} \right)$ …… (2)
Adding (1) and (2) equations
$area\left( {\vartriangle AOC} \right) + area\left( {\vartriangle BOC} \right) = area\left( {\vartriangle AOD} \right) = area\left( {\vartriangle BOD} \right)$
$ \Rightarrow area\left( {\vartriangle ABC} \right) = area\left( {\vartriangle ABD} \right)$
Note: Whenever you come to this type of problem you have to know about median divide the triangle in two equal areas. So for easy solving you know about theorems regarding the area of a triangle.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the difference between lightdependent and lightindependent class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

How are lightdependent and lightindependent reactions class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

