Answer
Verified
390.3k+ views
Hint: Any block placed on a rough surface (having some coefficient of friction) moves when the force applied on it is greater than limiting static friction (or limiting friction) whose value is equals to the normal force times the coefficient of friction.
Formula used:
The mathematical expression for static friction is given by,
\[f\, = \,\mu N\]
where $f$ is the frictional force and $N$ is the normal force.
Complete step by step answer:
Let’s analyse the blocks first
Block C: Forces acting on Block C are:
-Normal reaction force from surface on which it is kept (N)
-Tension force (${T_1}$)
-Its weight (60N)
-Static frictional force (f)
As block C is in equilibrium
\[\therefore \,\,\sum {{F_x}\, = \,0\,} \]
\[ \Rightarrow \,f - \,{T_{1\,}}\, = \,0\]
Hence \[f = \,\,{T_{1\,}}\] ……………..…………………\[(i)\]
also \[\sum {{F_y}\, = \,0\,} \]
\[ \Rightarrow \,\,N\, - \,\,60\, = \,0\] or \[N\, = \,\,60\] …………..\[(ii)\]
The frictional force on block C:
\[f\, = \,\mu N\, = \,0.5 \times \,60\, = \,30N\]………\[(iii)\] [using \[(ii)\]]
Using equation \[(i)\] and \[(iii)\] we get \[{T_1}\,\, = \,\,30N\]………….\[(iv)\]
Block B: Forces acting on Block B are:
Tension force (${T_3}$)
Its weight (W). As block B is in equilibrium
\[\therefore \,\sum {{F_y}\, = \,0\,} \] \[ \Rightarrow \,\,{T_{3\,}}\, - \,\,W\, = \,0\]
Hence, \[{T_{3\,}}\, = \,\,W\] ………………………………..\[(v)\]
As the junction P is in equilibrium so at point P
\[\sum {{F_x}\, = \,0\,} \]
\[\therefore \,\,{T_1}\, = \,{T_2} \times \dfrac{1}{{\sqrt 2 }}\]……………..\[(vi)\]
\[\sum {{F_y}\, = \,0\,} \]
\[\therefore \,{T_3}\, = \,\,{T_2}\, \times \dfrac{1}{{\sqrt 2 }}\]…………….\[(vii)\]
Now using equation \[(vi)\]and\[(iv)\]we get
\[{T_1}\, = \,{T_2} \times \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow \,{T_2} = \,\sqrt 2 {T_1}\,\]
\[\therefore \,\,{T_2}\,\, = \,30\sqrt 2 \,N\]……………\[(viii)\]
Finally, using equation \[(v)\],\[(vii)\] and \[(viii)\]
\[{T_3}\, = \,\,30\sqrt 2 \, \times \dfrac{1}{{\sqrt 2 }}\, = \,30N\] and \[{T_{3\,}}\, = \,\,W\]
Hence \[W\,\, = \,\,30\,Newtons\].
Note: If a block is at rest and keeps on resting on applying force then applied force is equal to the frictional force on the block as net force on the block = 0 in the condition of equilibrium. A body remains at rest if no external force is applied to it.
Formula used:
The mathematical expression for static friction is given by,
\[f\, = \,\mu N\]
where $f$ is the frictional force and $N$ is the normal force.
Complete step by step answer:
Let’s analyse the blocks first
Block C: Forces acting on Block C are:
-Normal reaction force from surface on which it is kept (N)
-Tension force (${T_1}$)
-Its weight (60N)
-Static frictional force (f)
As block C is in equilibrium
\[\therefore \,\,\sum {{F_x}\, = \,0\,} \]
\[ \Rightarrow \,f - \,{T_{1\,}}\, = \,0\]
Hence \[f = \,\,{T_{1\,}}\] ……………..…………………\[(i)\]
also \[\sum {{F_y}\, = \,0\,} \]
\[ \Rightarrow \,\,N\, - \,\,60\, = \,0\] or \[N\, = \,\,60\] …………..\[(ii)\]
The frictional force on block C:
\[f\, = \,\mu N\, = \,0.5 \times \,60\, = \,30N\]………\[(iii)\] [using \[(ii)\]]
Using equation \[(i)\] and \[(iii)\] we get \[{T_1}\,\, = \,\,30N\]………….\[(iv)\]
Block B: Forces acting on Block B are:
Tension force (${T_3}$)
Its weight (W). As block B is in equilibrium
\[\therefore \,\sum {{F_y}\, = \,0\,} \] \[ \Rightarrow \,\,{T_{3\,}}\, - \,\,W\, = \,0\]
Hence, \[{T_{3\,}}\, = \,\,W\] ………………………………..\[(v)\]
As the junction P is in equilibrium so at point P
\[\sum {{F_x}\, = \,0\,} \]
\[\therefore \,\,{T_1}\, = \,{T_2} \times \dfrac{1}{{\sqrt 2 }}\]……………..\[(vi)\]
\[\sum {{F_y}\, = \,0\,} \]
\[\therefore \,{T_3}\, = \,\,{T_2}\, \times \dfrac{1}{{\sqrt 2 }}\]…………….\[(vii)\]
Now using equation \[(vi)\]and\[(iv)\]we get
\[{T_1}\, = \,{T_2} \times \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow \,{T_2} = \,\sqrt 2 {T_1}\,\]
\[\therefore \,\,{T_2}\,\, = \,30\sqrt 2 \,N\]……………\[(viii)\]
Finally, using equation \[(v)\],\[(vii)\] and \[(viii)\]
\[{T_3}\, = \,\,30\sqrt 2 \, \times \dfrac{1}{{\sqrt 2 }}\, = \,30N\] and \[{T_{3\,}}\, = \,\,W\]
Hence \[W\,\, = \,\,30\,Newtons\].
Note: If a block is at rest and keeps on resting on applying force then applied force is equal to the frictional force on the block as net force on the block = 0 in the condition of equilibrium. A body remains at rest if no external force is applied to it.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE