Answer

Verified

417.3k+ views

**Hint:**First use the distributive property of power to open the square brackets and then use law of indices for negative powers then expand the both factors by binomial expansion and then multiply factors which will make exponent equals “n” and then add all of them to get the coefficient.

**Complete step by step solution:**

To find the coefficient of ${x^n}$ in the expansion of ${\left[ {\dfrac{{(1 + x)}}{{(1 - x)}}} \right]^2},$ we will first expand both the factors and then multiply them as follows

$

= {\left[ {\dfrac{{(1 + x)}}{{(1 - x)}}} \right]^2} \\

= \dfrac{{{{(1 + x)}^2}}}{{{{(1 - x)}^2}}} \\

$

We can write it as

$ = {(1 + x)^2}{(1 - x)^{ - 2}}$

Now to expand the first factor we know the formula ${(a + b)^2} = {a^2} + 2ab + {b^2}$ and for second factor we have to use binomial theorem for negative powers which is given as

${(1 + x)^{ - n}} = 1 - nx + \dfrac{1}{2}n(n + 1){x^2} - \dfrac{1}{6}n(n + 1)(n + 2){x^3} +

....\;\;\;\;{\text{where}}\;\left| x \right| < 1$

Using both of these expansions to expand the above expression, we will get

$ = \left( {1 + 2x + {x^2}} \right)\left[ {1 + 2x + 3{x^2} + .... + (n - 1){x^{n - 2}} + n{x^{n - 1}} + (n + 1){x^n} + ...} \right]$

Now if we see the multiplicands carefully, then we will get that there will be only three terms come from the multiplication that have coefficient ${x^n}$, the terms are as follows:

i. When $1$ present in the first multiplicand is multiplied with $(n + 1){x^n}$ in the second multiplicand.

ii. When $2x$ present in first multiplicand is multiplied with $n{x^{n - 1}}$

iii. And when ${x^2}$ present in first multiplicand is multiplied with $(n - 1){x^{n - 2}}$

So we will get the following terms after their multiplication,

$(n + 1){x^n},\;2n{x^n}\;and\;(n - 1){x^n}$ respectively

**Therefore required coefficient of ${x^n}$ will be $n + 1 + 2n + n - 1 = 4n$**

**Note:**Strictly note that binomial expansion for negative exponent formula is only applicable when the value of modulus of the variable is less than the constant present in it.

At last we have added all the coefficients of ${x^n}$ because terms having the same variable and exponent should be added to simplify the result.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE