
In the expansion of \[{{\left( 1+a \right)}^{m+n}}\] prove that coefficients of \[{{a}^{m}}\] and \[{{a}^{n}}\] are equal.
Answer
605.7k+ views
Hint: \[{{\left( 1+a \right)}^{m+n}}\] is similar to the binomial expansion of \[{{\left( a+b \right)}^{n}}\]. Find the expansion and substitute \[{{a}^{r}}={{a}^{m}}\] and \[{{a}^{r}}={{a}^{n}}\]. The simplification will state that the coefficient of both \[{{a}^{m}}\]and \[{{a}^{n}}\] is same.
Complete step-by-step Solution:
Given an expression \[{{\left( 1+a \right)}^{m+n}}\]. We need to prove that the expansion of \[{{\left( 1+a \right)}^{m+n}}\]will result in the coefficients \[{{a}^{m}}\]and \[{{a}^{n}}\] being equal.
We know the general term of expansion of \[{{\left( a+b \right)}^{n}}\], which is a binomial expansion.
It is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\]into a sum involving term of form \[xa{{b}^{z}}\], where exponents y and z are non-negative integers and \[n=y+z\], and co-efficient x of each-term is a specific positive integer.
\[{{\left( a+b \right)}^{n}}\] is expanded as, \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
i.e. if a and b are real numbers and n is a positive integer then,
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+......+{}^{n}{{C}_{n}}{{b}^{n}}\]
where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]for \[0\le r\le n\].
Therefore, general term or \[{{\left( r+1 \right)}^{th}}\]term in the expansion given by,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Now, for \[{{\left( 1+a \right)}^{m+n}}={{\left( a+b \right)}^{n}}\].
Let’s put \[n=m+n\], a = 1 and b = a.
\[\begin{align}
& {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{1}^{\left( n+m-r \right)}}{{\left( a \right)}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times {{1}^{\left( n+m-r \right)}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times 1 \\
\end{align}\]
We know \[{{1}^{\left( n+m-r \right)}}\]is equal to 1 i.e. 1 raised to any integer is 1.
\[{{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}-(1)\]
Now here we need to find the coefficients of \[{{a}^{m}}\]and \[{{a}^{n}}\]and prove that their coefficients are the same.
Finding coefficient of \[{{a}^{m}}\], let us put \[{{a}^{r}}={{a}^{m}}\].
\[\therefore r=m\]
Let us put r = m in equation (1).
\[{{T}_{m+1}}={}^{n+m}{{C}_{m}}{{a}^{m}}\]
\[{}^{n+m}{{C}_{m}}\]is of the form \[{}^{n}{{C}_{r}}\]where \[\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-m \right)!m!}{{a}^{m}} \\
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{n!m!}{{a}^{m}} \\
\end{align}\]
Hence the coefficient of \[{{a}^{m}}\]is \[\dfrac{\left( n+m \right)!}{n!m!}\].
Now let us find the coefficient of \[{{a}^{n}}\].
Put, \[{{a}^{r}}={{a}^{n}}\Rightarrow r=n\].
Put r=n in equation (1).
\[\begin{align}
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}} \\
& {{T}_{n+1}}={}^{n+m}{{C}_{n}}{{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-n \right)n!}\times {{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{m!n!}{{a}^{n}} \\
\end{align}\]
Hence, the coefficient of \[{{a}^{n}}\]is \[\dfrac{\left( n+m \right)!}{m!n!}\].
\[\therefore \]Coefficient of \[{{a}^{m}}\]= coefficient of \[{{a}^{n}}=\dfrac{\left( n+m \right)!}{m!n!}\].
Hence proved.
Note: You can consider the expansion of \[{{\left( a+b \right)}^{n}}\]if you know it by heart. But it is also easy to derive. Remember to put \[{{a}^{r}}={{a}^{m}}\]and \[{{a}^{r}}={{a}^{n}}\]. Then only we can prove the coefficients are the same. Also remember the expansion of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Complete step-by-step Solution:
Given an expression \[{{\left( 1+a \right)}^{m+n}}\]. We need to prove that the expansion of \[{{\left( 1+a \right)}^{m+n}}\]will result in the coefficients \[{{a}^{m}}\]and \[{{a}^{n}}\] being equal.
We know the general term of expansion of \[{{\left( a+b \right)}^{n}}\], which is a binomial expansion.
It is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\]into a sum involving term of form \[xa{{b}^{z}}\], where exponents y and z are non-negative integers and \[n=y+z\], and co-efficient x of each-term is a specific positive integer.
\[{{\left( a+b \right)}^{n}}\] is expanded as, \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
i.e. if a and b are real numbers and n is a positive integer then,
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+......+{}^{n}{{C}_{n}}{{b}^{n}}\]
where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]for \[0\le r\le n\].
Therefore, general term or \[{{\left( r+1 \right)}^{th}}\]term in the expansion given by,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Now, for \[{{\left( 1+a \right)}^{m+n}}={{\left( a+b \right)}^{n}}\].
Let’s put \[n=m+n\], a = 1 and b = a.
\[\begin{align}
& {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{1}^{\left( n+m-r \right)}}{{\left( a \right)}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times {{1}^{\left( n+m-r \right)}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times 1 \\
\end{align}\]
We know \[{{1}^{\left( n+m-r \right)}}\]is equal to 1 i.e. 1 raised to any integer is 1.
\[{{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}-(1)\]
Now here we need to find the coefficients of \[{{a}^{m}}\]and \[{{a}^{n}}\]and prove that their coefficients are the same.
Finding coefficient of \[{{a}^{m}}\], let us put \[{{a}^{r}}={{a}^{m}}\].
\[\therefore r=m\]
Let us put r = m in equation (1).
\[{{T}_{m+1}}={}^{n+m}{{C}_{m}}{{a}^{m}}\]
\[{}^{n+m}{{C}_{m}}\]is of the form \[{}^{n}{{C}_{r}}\]where \[\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-m \right)!m!}{{a}^{m}} \\
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{n!m!}{{a}^{m}} \\
\end{align}\]
Hence the coefficient of \[{{a}^{m}}\]is \[\dfrac{\left( n+m \right)!}{n!m!}\].
Now let us find the coefficient of \[{{a}^{n}}\].
Put, \[{{a}^{r}}={{a}^{n}}\Rightarrow r=n\].
Put r=n in equation (1).
\[\begin{align}
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}} \\
& {{T}_{n+1}}={}^{n+m}{{C}_{n}}{{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-n \right)n!}\times {{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{m!n!}{{a}^{n}} \\
\end{align}\]
Hence, the coefficient of \[{{a}^{n}}\]is \[\dfrac{\left( n+m \right)!}{m!n!}\].
\[\therefore \]Coefficient of \[{{a}^{m}}\]= coefficient of \[{{a}^{n}}=\dfrac{\left( n+m \right)!}{m!n!}\].
Hence proved.
Note: You can consider the expansion of \[{{\left( a+b \right)}^{n}}\]if you know it by heart. But it is also easy to derive. Remember to put \[{{a}^{r}}={{a}^{m}}\]and \[{{a}^{r}}={{a}^{n}}\]. Then only we can prove the coefficients are the same. Also remember the expansion of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

