In the expansion of \[{{\left( 1+a \right)}^{m+n}}\] prove that coefficients of \[{{a}^{m}}\] and \[{{a}^{n}}\] are equal.
Answer
379.8k+ views
Hint: \[{{\left( 1+a \right)}^{m+n}}\] is similar to the binomial expansion of \[{{\left( a+b \right)}^{n}}\]. Find the expansion and substitute \[{{a}^{r}}={{a}^{m}}\] and \[{{a}^{r}}={{a}^{n}}\]. The simplification will state that the coefficient of both \[{{a}^{m}}\]and \[{{a}^{n}}\] is same.
Complete step-by-step Solution:
Given an expression \[{{\left( 1+a \right)}^{m+n}}\]. We need to prove that the expansion of \[{{\left( 1+a \right)}^{m+n}}\]will result in the coefficients \[{{a}^{m}}\]and \[{{a}^{n}}\] being equal.
We know the general term of expansion of \[{{\left( a+b \right)}^{n}}\], which is a binomial expansion.
It is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\]into a sum involving term of form \[xa{{b}^{z}}\], where exponents y and z are non-negative integers and \[n=y+z\], and co-efficient x of each-term is a specific positive integer.
\[{{\left( a+b \right)}^{n}}\] is expanded as, \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
i.e. if a and b are real numbers and n is a positive integer then,
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+......+{}^{n}{{C}_{n}}{{b}^{n}}\]
where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]for \[0\le r\le n\].
Therefore, general term or \[{{\left( r+1 \right)}^{th}}\]term in the expansion given by,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Now, for \[{{\left( 1+a \right)}^{m+n}}={{\left( a+b \right)}^{n}}\].
Let’s put \[n=m+n\], a = 1 and b = a.
\[\begin{align}
& {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{1}^{\left( n+m-r \right)}}{{\left( a \right)}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times {{1}^{\left( n+m-r \right)}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times 1 \\
\end{align}\]
We know \[{{1}^{\left( n+m-r \right)}}\]is equal to 1 i.e. 1 raised to any integer is 1.
\[{{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}-(1)\]
Now here we need to find the coefficients of \[{{a}^{m}}\]and \[{{a}^{n}}\]and prove that their coefficients are the same.
Finding coefficient of \[{{a}^{m}}\], let us put \[{{a}^{r}}={{a}^{m}}\].
\[\therefore r=m\]
Let us put r = m in equation (1).
\[{{T}_{m+1}}={}^{n+m}{{C}_{m}}{{a}^{m}}\]
\[{}^{n+m}{{C}_{m}}\]is of the form \[{}^{n}{{C}_{r}}\]where \[\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-m \right)!m!}{{a}^{m}} \\
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{n!m!}{{a}^{m}} \\
\end{align}\]
Hence the coefficient of \[{{a}^{m}}\]is \[\dfrac{\left( n+m \right)!}{n!m!}\].
Now let us find the coefficient of \[{{a}^{n}}\].
Put, \[{{a}^{r}}={{a}^{n}}\Rightarrow r=n\].
Put r=n in equation (1).
\[\begin{align}
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}} \\
& {{T}_{n+1}}={}^{n+m}{{C}_{n}}{{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-n \right)n!}\times {{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{m!n!}{{a}^{n}} \\
\end{align}\]
Hence, the coefficient of \[{{a}^{n}}\]is \[\dfrac{\left( n+m \right)!}{m!n!}\].
\[\therefore \]Coefficient of \[{{a}^{m}}\]= coefficient of \[{{a}^{n}}=\dfrac{\left( n+m \right)!}{m!n!}\].
Hence proved.
Note: You can consider the expansion of \[{{\left( a+b \right)}^{n}}\]if you know it by heart. But it is also easy to derive. Remember to put \[{{a}^{r}}={{a}^{m}}\]and \[{{a}^{r}}={{a}^{n}}\]. Then only we can prove the coefficients are the same. Also remember the expansion of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Complete step-by-step Solution:
Given an expression \[{{\left( 1+a \right)}^{m+n}}\]. We need to prove that the expansion of \[{{\left( 1+a \right)}^{m+n}}\]will result in the coefficients \[{{a}^{m}}\]and \[{{a}^{n}}\] being equal.
We know the general term of expansion of \[{{\left( a+b \right)}^{n}}\], which is a binomial expansion.
It is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\]into a sum involving term of form \[xa{{b}^{z}}\], where exponents y and z are non-negative integers and \[n=y+z\], and co-efficient x of each-term is a specific positive integer.
\[{{\left( a+b \right)}^{n}}\] is expanded as, \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
i.e. if a and b are real numbers and n is a positive integer then,
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+......+{}^{n}{{C}_{n}}{{b}^{n}}\]
where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]for \[0\le r\le n\].
Therefore, general term or \[{{\left( r+1 \right)}^{th}}\]term in the expansion given by,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Now, for \[{{\left( 1+a \right)}^{m+n}}={{\left( a+b \right)}^{n}}\].
Let’s put \[n=m+n\], a = 1 and b = a.
\[\begin{align}
& {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{1}^{\left( n+m-r \right)}}{{\left( a \right)}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times {{1}^{\left( n+m-r \right)}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times 1 \\
\end{align}\]
We know \[{{1}^{\left( n+m-r \right)}}\]is equal to 1 i.e. 1 raised to any integer is 1.
\[{{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}-(1)\]
Now here we need to find the coefficients of \[{{a}^{m}}\]and \[{{a}^{n}}\]and prove that their coefficients are the same.
Finding coefficient of \[{{a}^{m}}\], let us put \[{{a}^{r}}={{a}^{m}}\].
\[\therefore r=m\]
Let us put r = m in equation (1).
\[{{T}_{m+1}}={}^{n+m}{{C}_{m}}{{a}^{m}}\]
\[{}^{n+m}{{C}_{m}}\]is of the form \[{}^{n}{{C}_{r}}\]where \[\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-m \right)!m!}{{a}^{m}} \\
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{n!m!}{{a}^{m}} \\
\end{align}\]
Hence the coefficient of \[{{a}^{m}}\]is \[\dfrac{\left( n+m \right)!}{n!m!}\].
Now let us find the coefficient of \[{{a}^{n}}\].
Put, \[{{a}^{r}}={{a}^{n}}\Rightarrow r=n\].
Put r=n in equation (1).
\[\begin{align}
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}} \\
& {{T}_{n+1}}={}^{n+m}{{C}_{n}}{{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-n \right)n!}\times {{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{m!n!}{{a}^{n}} \\
\end{align}\]
Hence, the coefficient of \[{{a}^{n}}\]is \[\dfrac{\left( n+m \right)!}{m!n!}\].
\[\therefore \]Coefficient of \[{{a}^{m}}\]= coefficient of \[{{a}^{n}}=\dfrac{\left( n+m \right)!}{m!n!}\].
Hence proved.
Note: You can consider the expansion of \[{{\left( a+b \right)}^{n}}\]if you know it by heart. But it is also easy to derive. Remember to put \[{{a}^{r}}={{a}^{m}}\]and \[{{a}^{r}}={{a}^{n}}\]. Then only we can prove the coefficients are the same. Also remember the expansion of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
