# In the expansion of \[{{\left( 1+a \right)}^{m+n}}\] prove that coefficients of \[{{a}^{m}}\] and \[{{a}^{n}}\] are equal.

Last updated date: 26th Mar 2023

•

Total views: 306.3k

•

Views today: 3.83k

Answer

Verified

306.3k+ views

**Hint:**\[{{\left( 1+a \right)}^{m+n}}\] is similar to the binomial expansion of \[{{\left( a+b \right)}^{n}}\]. Find the expansion and substitute \[{{a}^{r}}={{a}^{m}}\] and \[{{a}^{r}}={{a}^{n}}\]. The simplification will state that the coefficient of both \[{{a}^{m}}\]and \[{{a}^{n}}\] is same.

**Complete step-by-step Solution:**

Given an expression \[{{\left( 1+a \right)}^{m+n}}\]. We need to prove that the expansion of \[{{\left( 1+a \right)}^{m+n}}\]will result in the coefficients \[{{a}^{m}}\]and \[{{a}^{n}}\] being equal.

We know the general term of expansion of \[{{\left( a+b \right)}^{n}}\], which is a binomial expansion.

It is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\]into a sum involving term of form \[xa{{b}^{z}}\], where exponents y and z are non-negative integers and \[n=y+z\], and co-efficient x of each-term is a specific positive integer.

\[{{\left( a+b \right)}^{n}}\] is expanded as, \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].

i.e. if a and b are real numbers and n is a positive integer then,

\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+......+{}^{n}{{C}_{n}}{{b}^{n}}\]

where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]for \[0\le r\le n\].

Therefore, general term or \[{{\left( r+1 \right)}^{th}}\]term in the expansion given by,

\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]

Now, for \[{{\left( 1+a \right)}^{m+n}}={{\left( a+b \right)}^{n}}\].

Let’s put \[n=m+n\], a = 1 and b = a.

\[\begin{align}

& {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} \\

& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{1}^{\left( n+m-r \right)}}{{\left( a \right)}^{r}} \\

& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times {{1}^{\left( n+m-r \right)}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times 1 \\

\end{align}\]

We know \[{{1}^{\left( n+m-r \right)}}\]is equal to 1 i.e. 1 raised to any integer is 1.

\[{{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}-(1)\]

Now here we need to find the coefficients of \[{{a}^{m}}\]and \[{{a}^{n}}\]and prove that their coefficients are the same.

Finding coefficient of \[{{a}^{m}}\], let us put \[{{a}^{r}}={{a}^{m}}\].

\[\therefore r=m\]

Let us put r = m in equation (1).

\[{{T}_{m+1}}={}^{n+m}{{C}_{m}}{{a}^{m}}\]

\[{}^{n+m}{{C}_{m}}\]is of the form \[{}^{n}{{C}_{r}}\]where \[\dfrac{n!}{r!\left( n-r \right)!}\].

\[\begin{align}

& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-m \right)!m!}{{a}^{m}} \\

& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{n!m!}{{a}^{m}} \\

\end{align}\]

Hence the coefficient of \[{{a}^{m}}\]is \[\dfrac{\left( n+m \right)!}{n!m!}\].

Now let us find the coefficient of \[{{a}^{n}}\].

Put, \[{{a}^{r}}={{a}^{n}}\Rightarrow r=n\].

Put r=n in equation (1).

\[\begin{align}

& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}} \\

& {{T}_{n+1}}={}^{n+m}{{C}_{n}}{{a}^{n}} \\

& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-n \right)n!}\times {{a}^{n}} \\

& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{m!n!}{{a}^{n}} \\

\end{align}\]

Hence, the coefficient of \[{{a}^{n}}\]is \[\dfrac{\left( n+m \right)!}{m!n!}\].

\[\therefore \]Coefficient of \[{{a}^{m}}\]= coefficient of \[{{a}^{n}}=\dfrac{\left( n+m \right)!}{m!n!}\].

Hence proved.

**Note:**You can consider the expansion of \[{{\left( a+b \right)}^{n}}\]if you know it by heart. But it is also easy to derive. Remember to put \[{{a}^{r}}={{a}^{m}}\]and \[{{a}^{r}}={{a}^{n}}\]. Then only we can prove the coefficients are the same. Also remember the expansion of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE