
In the equation \[k = ZAB{\text{ }}\dfrac{{{e^{ - Ea}}\;}}{{RT}},\] what does \[\dfrac{{{e^{ - Ea}}\;}}{{RT}}\] represent?
Answer
507.9k+ views
Hint: The given equation represents the rate equation proposed by Arrhenius in chemical kinetics. It is called the Arrhenius equation, and is associated with the collision theory.
Complete answer:
\[k = ZAB{\text{ }}\dfrac{{{e^{ - Ea}}\;}}{{RT}}\] is the Arrhenius equation. It is the formula which depicts the relation between temperature and reaction rates.
Let us consider a reaction:
$A + B \to \,AB$
The rate of the corresponding reaction is:
\[k = ZAB{\text{ }}\dfrac{{{e^{ - Ea}}\;}}{{RT}}\]
Where:
- k is the rate constant, which indirectly represents the number of active collisions taking place in the reaction
- ZAB is a term which depicts the frequency of collisions taking place in a reaction. It is in accordance with the collision theory.
-${E_a}$ is the activation energy for the reaction $\left( {{\text{in}}\,Jmo{l^{ - 1}}} \right)$
- R is the universal gas constant $\left( {R = 8.314J{K^{ - 1}}mo{l^{ - 1}}} \right)$
- T is the absolute temperature (in Kelvin)
The term \[\dfrac{{{e^{ - Ea}}\;}}{{RT}}\] represents the fraction of collisions that take place in a reaction which have enough energy to overcome the activation barrier at temperature T. The activation barrier is interpreted as the energy equal to the activation energy or greater than the activation energy, in possession of which the barrier can be overcome and the reaction can take place.
Note:
According to collision theory, the rate of a reaction can be predicted by taking into consideration the number of effective collisions between the reactant molecules. For effective collision to take place between reactant molecules, two factors must be satisfied: the reactant molecules must collide in a state of minimum energy and they must collide with proper orientation
Complete answer:
\[k = ZAB{\text{ }}\dfrac{{{e^{ - Ea}}\;}}{{RT}}\] is the Arrhenius equation. It is the formula which depicts the relation between temperature and reaction rates.
Let us consider a reaction:
$A + B \to \,AB$
The rate of the corresponding reaction is:
\[k = ZAB{\text{ }}\dfrac{{{e^{ - Ea}}\;}}{{RT}}\]
Where:
- k is the rate constant, which indirectly represents the number of active collisions taking place in the reaction
- ZAB is a term which depicts the frequency of collisions taking place in a reaction. It is in accordance with the collision theory.
-${E_a}$ is the activation energy for the reaction $\left( {{\text{in}}\,Jmo{l^{ - 1}}} \right)$
- R is the universal gas constant $\left( {R = 8.314J{K^{ - 1}}mo{l^{ - 1}}} \right)$
- T is the absolute temperature (in Kelvin)
The term \[\dfrac{{{e^{ - Ea}}\;}}{{RT}}\] represents the fraction of collisions that take place in a reaction which have enough energy to overcome the activation barrier at temperature T. The activation barrier is interpreted as the energy equal to the activation energy or greater than the activation energy, in possession of which the barrier can be overcome and the reaction can take place.
Note:
According to collision theory, the rate of a reaction can be predicted by taking into consideration the number of effective collisions between the reactant molecules. For effective collision to take place between reactant molecules, two factors must be satisfied: the reactant molecules must collide in a state of minimum energy and they must collide with proper orientation
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

